
Classical simulation of quantum circuits with
partial and graphical stabiliser decompositions

Aleks Kissinger University of Oxford
Renaud Vilmart Inria Saclay

John van de Wetering Radboud University & Oxford

TQC – July 13th 2022

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.

Broadly, two ways to do this:
I Tensor-network based methods:

I direct state simulation
I principle component analysis
I contraction order finding
I edge cutting
I ...

I Stabiliser-decomposition based methods:
I Stabiliser extent
I Stabiliser rank ← This talk

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.
Broadly, two ways to do this:
I Tensor-network based methods:

I direct state simulation
I principle component analysis
I contraction order finding
I edge cutting
I ...

I Stabiliser-decomposition based methods:
I Stabiliser extent
I Stabiliser rank ← This talk

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.
Broadly, two ways to do this:
I Tensor-network based methods:

I direct state simulation
I principle component analysis
I contraction order finding
I edge cutting
I ...

I Stabiliser-decomposition based methods:
I Stabiliser extent
I Stabiliser rank ← This talk

Simulating using stabiliser rank

I Start with Clifford+T circuit.

I Write each T gate as magic state injection.

I Decompose T states into sum of stabilisers.

I Efficiently simulate resulting Clifford circuits.

I Add results together.

I We’re done!

What’s the catch?
Stabiliser rank of k T states scales exponentially with k.
... But it’s not just 2k terms. We can do better!

Simulating using stabiliser rank

I Start with Clifford+T circuit.

I Write each T gate as magic state injection.

I Decompose T states into sum of stabilisers.

I Efficiently simulate resulting Clifford circuits.

I Add results together.

I We’re done!

What’s the catch?
Stabiliser rank of k T states scales exponentially with k.
... But it’s not just 2k terms. We can do better!

Stabiliser ranks of T magic states

Recall |T 〉 ∝ |0〉+ e iπ/4|1〉.
So χ(|T 〉) = 2 and hence χ(|T 〉⊗k) ≤ 2k .

But also χ(|T 〉⊗2) = 2, so:

χ(|T 〉⊗k) = χ((|T 〉⊗2)⊗k/2) ≤ 2k/2 = 20.5k .

Turns out χ(|T 〉⊗6) ≤ 7 so
χ(|T 〉⊗k) ≤ 2αk where α = log2(7)/6 ≈ 0.467.
Found by Bravyi, Smith, Smolin (BSS) in 2016.

Even have χ(|T 〉⊗6) = 6 (previous talk): α ≈ 0.431.

Stabiliser ranks of T magic states

Recall |T 〉 ∝ |0〉+ e iπ/4|1〉.
So χ(|T 〉) = 2 and hence χ(|T 〉⊗k) ≤ 2k .

But also χ(|T 〉⊗2) = 2, so:

χ(|T 〉⊗k) = χ((|T 〉⊗2)⊗k/2) ≤ 2k/2 = 20.5k .

Turns out χ(|T 〉⊗6) ≤ 7 so
χ(|T 〉⊗k) ≤ 2αk where α = log2(7)/6 ≈ 0.467.
Found by Bravyi, Smith, Smolin (BSS) in 2016.

Even have χ(|T 〉⊗6) = 6 (previous talk): α ≈ 0.431.

Stabiliser ranks of T magic states

Recall |T 〉 ∝ |0〉+ e iπ/4|1〉.
So χ(|T 〉) = 2 and hence χ(|T 〉⊗k) ≤ 2k .

But also χ(|T 〉⊗2) = 2, so:

χ(|T 〉⊗k) = χ((|T 〉⊗2)⊗k/2) ≤ 2k/2 = 20.5k .

Turns out χ(|T 〉⊗6) ≤ 7 so
χ(|T 〉⊗k) ≤ 2αk where α = log2(7)/6 ≈ 0.467.
Found by Bravyi, Smith, Smolin (BSS) in 2016.

Even have χ(|T 〉⊗6) = 6 (previous talk): α ≈ 0.431.

Our idea

Do stabiliser rank decompositions,
but with ZX-diagrams instead of circuits!

Benefit 1: optimise intermediate ZX-diagrams to reduce T-count.
Benefit 2: Can use fancier stabiliser decompositions.

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 · · · 0〉〈0 · · · 0| |+ · · ·+〉〈+ · · ·+|
+e iα|1 · · · 1〉〈1 · · · 1| + e iα|- · · · -〉〈- · · · -|

α

..
.

..
. α

..
.

..
.

For example:

α = |0〉〈0|+e iα|1〉〈1| =

(
1 0
0 0

)
+

(
0 0
0 e iα

)
=

(
1 0
0 e iα

)

α = |+〉〈+|+e iα|−〉〈−| =
1

2

(
1 1
1 1

)
+

1

2
e iα
(

1 −1
−1 1

)

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 · · · 0〉〈0 · · · 0| |+ · · ·+〉〈+ · · ·+|
+e iα|1 · · · 1〉〈1 · · · 1| + e iα|- · · · -〉〈- · · · -|

α

..
.

..
. α

..
.

..
.

For example:

α = |0〉〈0|+e iα|1〉〈1| =

(
1 0
0 0

)
+

(
0 0
0 e iα

)
=

(
1 0
0 e iα

)

α = |+〉〈+|+e iα|−〉〈−| =
1

2

(
1 1
1 1

)
+

1

2
e iα
(

1 −1
−1 1

)

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 · · · 0〉〈0 · · · 0| |+ · · ·+〉〈+ · · ·+|
+e iα|1 · · · 1〉〈1 · · · 1| + e iα|- · · · -〉〈- · · · -|

α

..
.

..
. α

..
.

..
.

For example:

α = |0〉〈0|+e iα|1〉〈1| =

(
1 0
0 0

)
+

(
0 0
0 e iα

)
=

(
1 0
0 e iα

)

α = |+〉〈+|+e iα|−〉〈−| =
1

2

(
1 1
1 1

)
+

1

2
e iα
(

1 −1
−1 1

)

Spiders cont.

If α = 0 we drop the label:
..

.

..
. = |0 · · · 0〉〈0 · · · 0|+ |1 · · · 1〉〈1 · · · 1|

..
.

..
. = |+ · · ·+〉〈+ · · ·+ |+ | − · · · −〉〈− · · · − |

Example:

= |+〉+ |−〉 =
√

2|0〉 = |0〉+ |1〉 =
√

2|+〉
π = |+〉 − |−〉 =

√
2|1〉 π = |0〉 − |1〉 =

√
2|−〉

Spiders cont.

If α = 0 we drop the label:
..

.

..
. = |0 · · · 0〉〈0 · · · 0|+ |1 · · · 1〉〈1 · · · 1|

..
.

..
. = |+ · · ·+〉〈+ · · ·+ |+ | − · · · −〉〈− · · · − |

Example:

= |+〉+ |−〉 =
√

2|0〉 = |0〉+ |1〉 =
√

2|+〉
π = |+〉 − |−〉 =

√
2|1〉 π = |0〉 − |1〉 =

√
2|−〉

Formal composition

Spiders can be composed in two ways.

Vertical composition gives tensor product:

=


1 0
0 0
0 0
0 1



=


1 0
0 0
0 0
0 1

 ⊗ (
1 0
0 1

)
=



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



Formal composition

Spiders can be composed in two ways.
Vertical composition gives tensor product:

=


1 0
0 0
0 0
0 1



=


1 0
0 0
0 0
0 1

 ⊗ (
1 0
0 1

)
=



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



Formal composition

Horizontal composition is regular composition of linear maps:

=

1√
2


1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0





1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


= 1√

2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions

Symmetries
Note:

=

Hence, we may write

In general: only connectivity matters

=

π

π
2

π
4

-π2π

π

π
2

π
4

-π2

π
=

π

π
2

π
4

-π2

π

Symmetries
Note:

=

Hence, we may write

In general: only connectivity matters

=

π

π
2

π
4

-π2π

π

π
2

π
4

-π2

π
=

π

π
2

π
4

-π2

π

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

New algorithm

I Write Clifford+T circuit as ZX-diagram.

I Simplify diagram with your favourite algorithm.

I Pick some spiders with T-like phase and decompose them.

I Simplify resulting sum of diagrams.

I Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

I Simply evaluate all the diagrams to get your outcome!

Let’s go through these steps in more detail.

I Writing circuit as ZX-diagram

I Optimising ZX-diagram

I Decomposing magic states

Writing Clifford+T circuit as ZX-diagram

CNOT =
√

2 S = π
2 Had =

T = π
4 |x〉 =

1√
2

xπ 〈x | =
1√
2

xπ (x ∈ {0, 1})

Calculating single amplitude:

〈~x |U|0 · · · 0〉 =

x1π

x2π

x3π

xnπ

U

··
·

··
·

(
1√
2

)2n

Writing Clifford+T circuit as ZX-diagram

CNOT =
√

2 S = π
2 Had =

T = π
4 |x〉 =

1√
2

xπ 〈x | =
1√
2

xπ (x ∈ {0, 1})

Calculating single amplitude:

〈~x |U|0 · · · 0〉 =

x1π

x2π

x3π

xnπ

U
··
·

··
·

(
1√
2

)2n

Marginal probabilities

To calculate marginal probability, use doubling technique:

x1π

xkπ

U

··
·

··
·

··
· x1π

xkπ

U†

··
·

··
·

··
·

··
·

··
·

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.

We are doing exact strong simulation here.

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.

We are doing exact strong simulation here.

I Writing circuit as ZX-diagram X

I Optimising ZX-diagram

I Decomposing magic states

Simplifying ZX-diagrams

We use strategy from our previous paper
Reducing T-count with the ZX-calculus.

This transforms every ZX-diagram into something like this:

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

Here :=

Simplifying ZX-diagrams

We use strategy from our previous paper
Reducing T-count with the ZX-calculus.
This transforms every ZX-diagram into something like this:

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

Here :=

Properties of reduced diagram

The important part:

I Every spider carries a non-Clifford phase,

I or is part of a phase gadget: ..
.α

Particularly: if original circuit had k T gates,
resulting diagram has ≤ 2k spiders
(regardless of #qubits or #gates).

Properties of reduced diagram

The important part:

I Every spider carries a non-Clifford phase,

I or is part of a phase gadget: ..
.α

Particularly: if original circuit had k T gates,
resulting diagram has ≤ 2k spiders
(regardless of #qubits or #gates).

I Writing circuit as ZX-diagram X

I Optimising ZX-diagram X

I Decomposing magic states

Decomposing T-like spiders

The 6-to-7 magic state decomposition in ZX is:

e iπ/4 π
4

π
4

π
4

π
4

π
4

π
4

=

−1+
√
2

4
1−
√
2

4 π π π π π π
+

−2i−2
√

2i
π
2

π
2

π
2

π
2

π
2

π
2

+2e iπ/4
-π2

+8
√

2i
π

+8
√

2i
π

π
2

π
2

π
2

π
2

π
2

π
2

π

Applying the decomposition

We pick some spiders to decompose and unfuse the phases:

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

=

3π
4

π
2

π
4

π
43π

2

5π
4π

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

π
2

7π
4

π 5π
4

3π
2

π
4

5π
4

π
4

π
4

π
4

π
4

π
4

π
4

And now we can apply the magic state decomposition.

Better decompositions

⇒ improved stabiliser decompositions, including 6-to-6 decomp
(giving α ≈ 0.431 instead of α ≈ 0.467),
and other decomps giving α < 0.40.

Cat states

Qassim et al. uses cat states:

| catn〉 :=
1√
2

(I⊗n + Z⊗n)|T 〉⊗n =
1

√
2
n+1

(
π
4

⊗n + 5π
4

⊗n)

These actually have nice representation in ZX:

| catn〉 =
1√
2

π
4

π
4

π
4

...

Cat states

Qassim et al. uses cat states:

| catn〉 :=
1√
2

(I⊗n + Z⊗n)|T 〉⊗n =
1

√
2
n+1

(
π
4

⊗n + 5π
4

⊗n)
These actually have nice representation in ZX:

| catn〉 =
1√
2

π
4

π
4

π
4

...

Cat decompositions

They find good decomp of |cat6〉:

π
4

π
4

π
4

π
4

π
4

π
4

= −π
2 + ie iπ/4√

2
− e iπ/4√

2
1
2

π
2

π
2

π
2

π
2

π
2

π
2

So, if we only have |cat6〉 diagrams, we would have α ≈ 0.264.
But we can do even better!

π
4

π
4

π
4

π
4

= −π
2 + ie−iπ/4

√
2

This would give α = 0.25.
Using these we get good decompositions for |catk〉 with k ≤ 6.

Cat decompositions

They find good decomp of |cat6〉:

π
4

π
4

π
4

π
4

π
4

π
4

= −π
2 + ie iπ/4√

2
− e iπ/4√

2
1
2

π
2

π
2

π
2

π
2

π
2

π
2

So, if we only have |cat6〉 diagrams, we would have α ≈ 0.264.

But we can do even better!

π
4

π
4

π
4

π
4

= −π
2 + ie−iπ/4

√
2

This would give α = 0.25.
Using these we get good decompositions for |catk〉 with k ≤ 6.

Cat decompositions

They find good decomp of |cat6〉:

π
4

π
4

π
4

π
4

π
4

π
4

= −π
2 + ie iπ/4√

2
− e iπ/4√

2
1
2

π
2

π
2

π
2

π
2

π
2

π
2

So, if we only have |cat6〉 diagrams, we would have α ≈ 0.264.
But we can do even better!

π
4

π
4

π
4

π
4

= −π
2 + ie−iπ/4

√
2

This would give α = 0.25.

Using these we get good decompositions for |catk〉 with k ≤ 6.

Cat decompositions

They find good decomp of |cat6〉:

π
4

π
4

π
4

π
4

π
4

π
4

= −π
2 + ie iπ/4√

2
− e iπ/4√

2
1
2

π
2

π
2

π
2

π
2

π
2

π
2

So, if we only have |cat6〉 diagrams, we would have α ≈ 0.264.
But we can do even better!

π
4

π
4

π
4

π
4

= −π
2 + ie−iπ/4

√
2

This would give α = 0.25.
Using these we get good decompositions for |catk〉 with k ≤ 6.

Phase gadgets are cat states

We find cat states as phase gadgets:

(2k+1)π
4

(2k1+1)π
4 (2kn+1)π

4
...

=
k1

π
2 kn

π
2

...

π
4

π
4

π
4

k π
2

...

So n-legged phase gadget is |catn+1〉 state.

So as long as there are phase gadgets with ≤ 5 legs, we can use
these decompositions.

Phase gadgets are cat states

We find cat states as phase gadgets:

(2k+1)π
4

(2k1+1)π
4 (2kn+1)π

4
...

=
k1

π
2 kn

π
2

...

π
4

π
4

π
4

k π
2

...

So n-legged phase gadget is |catn+1〉 state.

So as long as there are phase gadgets with ≤ 5 legs, we can use
these decompositions.

Partial stabiliser decomp

But what if there are no phase gadgets?

Then we can do the following ‘partial’ decomp:

π
4 −π

4

π
4

π
4

π
4

π
4

π
4

=

π
4

π
4

π
4

π
4

π
4

4 −π
2

−π
4

+ 2
√

2ie iπ/4

−π
4

− 2
√

2e iπ/42

π
2

π
2

π
2

π
2

π
2

π
4

=

This trades 5 magic states for 3 terms with 1 magic per term.
So effectively removes 4 magic states.
This is then a 4-to-3 decomp: α ≈ 0.396.

Full strategy

We are hence looking for the following things to decompose:

1. a phase gadget with 3 legs (α = 0.25),

2. a phase gadget with 5 legs (α ≈ 0.264),

3. a phase gadget with 4 legs (α ≈ 0.317),

4. a phase gadget with 2 legs (α = 1/3 ≈ 0.333),

5. any 5 T-spiders (α ≈ 0.396).

So how well does all this work?

Asymptotic benefit

I Worst case: no T-like phases killed during simplification.

I Then every diagram only needs constant number of rewrites.

I Size of diagrams are O(k), so a rewrite costs O(k2).

I There are O(2αk) diagrams, so total cost is O(2αkk2).

I (Bravyi et al., 2016) gave O(2αkk3).

I Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.

Asymptotic benefit

I Worst case: no T-like phases killed during simplification.

I Then every diagram only needs constant number of rewrites.

I Size of diagrams are O(k), so a rewrite costs O(k2).

I There are O(2αk) diagrams, so total cost is O(2αkk2).

I (Bravyi et al., 2016) gave O(2αkk3).

I Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.

Asymptotic benefit

I Worst case: no T-like phases killed during simplification.

I Then every diagram only needs constant number of rewrites.

I Size of diagrams are O(k), so a rewrite costs O(k2).

I There are O(2αk) diagrams, so total cost is O(2αkk2).

I (Bravyi et al., 2016) gave O(2αkk3).

I Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.

Asymptotic benefit

I Worst case: no T-like phases killed during simplification.

I Then every diagram only needs constant number of rewrites.

I Size of diagrams are O(k), so a rewrite costs O(k2).

I There are O(2αk) diagrams, so total cost is O(2αkk2).

I (Bravyi et al., 2016) gave O(2αkk3).

I Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.

Asymptotic benefit

I Worst case: no T-like phases killed during simplification.

I Then every diagram only needs constant number of rewrites.

I Size of diagrams are O(k), so a rewrite costs O(k2).

I There are O(2αk) diagrams, so total cost is O(2αkk2).

I (Bravyi et al., 2016) gave O(2αkk3).

I Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.

Actual benefit

We benchmarked our method on two families of circuits:

I 50- and 100-qubit random Clifford+T circuits built out of
Pauli exponentials.

I 50-qubit hidden-shift circuits (type of CCZ circuit).

We are sampling from the output distribution
(using strong simulation).

Code is implemented in quizx, a Rust port of PyZX.

Benchmark: Clifford+T

Percentage of random 50- and 100-qubit circuits of a given
T-count that were successfully sampled in under 5 minutes.
For each T-count 50 random circuits were generated.

Benchmark: Clifford+T cat-decomp comparison

Runtime of random 20-qubit Clifford+T circuit simulations
(avg of 10 runs per T-count).

Benchmark: hidden-shift circuit term reduction

Reduction vs. näıve BSS
decomposition

Reduction vs. simplified BSS
decomposition

Reduction in term count on 50-qubit hidden shift circuits vs. näıve
BSS decomposition (left) and BSS decomposition after single
ZX-simplification (right).

Benchmark: hidden-shift 50-qubit simulation time

The time distribution of simulating 100 random 50-qubit
hidden-shift circuits with T-count 1400 using our new
decompositions.

Conclusions

I Using ZX we can greatly speed-up stabiliser rank simulations.

I Especially for structured circuits.

I It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.

Future work:

I Use more diagram optimisations and decompositions

I Find heuristics for picking good spiders to decompose.

I Approximate simulation and better weak simulation.

I Use quantum measurement w/o computing marginals
technique.

Conclusions

I Using ZX we can greatly speed-up stabiliser rank simulations.

I Especially for structured circuits.

I It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.

Future work:

I Use more diagram optimisations and decompositions

I Find heuristics for picking good spiders to decompose.

I Approximate simulation and better weak simulation.

I Use quantum measurement w/o computing marginals
technique.

Conclusions

I Using ZX we can greatly speed-up stabiliser rank simulations.

I Especially for structured circuits.

I It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.

Future work:

I Use more diagram optimisations and decompositions

I Find heuristics for picking good spiders to decompose.

I Approximate simulation and better weak simulation.

I Use quantum measurement w/o computing marginals
technique.

Thank you for your attention!

Further reading:

I Kissinger & vdW. Simulating quantum circuits with
ZX-calculus reduced stabiliser decompositions.
arXiv: 2109.01076

I Kissinger, Vilmart & vdW. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions.
arXiv: 2202.09202

I Qassim, Pashayan, Gosset. Improved upper bounds on the
stabilizer rank of magic states.
arXiv: 2106.07740

I Bravyi, Gosset. Improved classical simulation of quantum
circuits dominated by Clifford gates.
arXiv: 1601.07601

