Classical simulation of quantum circuits with
partial and graphical stabiliser decompositions

Aleks Kissinger University of Oxford
Renaud Vilmart Inria Saclay
John van de Wetering Radboud University & Oxford

TQC - July 13th 2022



Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.



Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.
Broadly, two ways to do this:
» Tensor-network based methods:
P direct state simulation
» principle component analysis
» contraction order finding

> edge cutting
>



Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.
Broadly, two ways to do this:
» Tensor-network based methods:

> direct state simulation

» principle component analysis
» contraction order finding

> edge cutting

>

» Stabiliser-decomposition based methods:

» Stabiliser extent
» Stabiliser rank < This talk
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Simulating using stabiliser rank

Start with Clifford+T circuit.

Write each T gate as magic state injection.

>
>
» Decompose T states into sum of stabilisers.
> Efficiently simulate resulting Clifford circuits.
> Add results together.

>

We're done!

What's the catch?
Stabiliser rank of k T states scales exponentially with k.
... But it's not just 2% terms. We can do better!
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Stabiliser ranks of T magic states

Recall |T) o |0) + e/™/*]1).
So x(]T)) = 2 and hence x(| T)®k) < 2k,

But also x (]| T)®?) = 2, so:
X(’T>®k) — X((’T>®2)®k/2) < 2k/2 — 20.5k'

Turns out x(| T)®%) < 7 so
x(| T)Y®K) < 29K where a = log,(7)/6 ~ 0.467.
Found by Bravyi, Smith, Smolin (BSS) in 2016.

Even have x(|T)®°) = 6 (previous talk): « ~ 0.431.



Our idea

Do stabiliser rank decompositions,
but with ZX-diagrams instead of circuits!

Benefit 1: optimise intermediate ZX-diagrams to reduce T-count.
Benefit 2: Can use fancier stabiliser decompositions.
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Spiders cont.

If & =0 we drop the label:
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Spiders cont.

If & =0 we drop the label:
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Formal composition

Spiders can be composed in two ways.



Formal composition

Spiders can be composed in two ways.
Vertical composition gives tensor product:
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Formal composition

Horizontal composition is regular composition of linear maps:
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Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions
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Symmetries
Note:

Hence, we may write

D

In general: only connectivity matters
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New algorithm
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>

Write Clifford+T circuit as ZX-diagram.

Simplify diagram with your favourite algorithm.

Pick some spiders with T-like phase and decompose them.
Simplify resulting sum of diagrams.

Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

Simply evaluate all the diagrams to get your outcome!

Let's go through these steps in more detail.



> Writing circuit as ZX-diagram
» Optimising ZX-diagram
» Decomposing magic states
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Writing Clifford+T circuit as ZX-diagram

CNOT = V2 i S=—G— Had = —o—
T=-—0— W=5@ =@ (e

Calculating single amplitude:
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Marginal probabilities

To calculate marginal probability, use doubling technique:
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Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.



Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.

We are doing exact strong simulation here.
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Simplifying ZX-diagrams

We use strategy from our previous paper
Reducing T-count with the ZX-calculus.
This transforms every ZX-diagram into something like this:
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Properties of reduced diagram

The important part:

» Every spider carries a non-Clifford phase,
» or is part of a phase gadget: @G<

Particularly: if original circuit had k T gates,
resulting diagram has < 2k spiders
(regardless of #qubits or #gates).



» Writing circuit as ZX-diagram v’
» Optimising ZX-diagram v/
» Decomposing magic states



Decomposing T-like spiders

The 6-to-7 magic state decomposition in ZX is:
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Applying the decomposition
We pick some spiders to decompose and unfuse the phases:
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And now we can apply the magic state decomposition.



Better decompositions

Improved upper bounds on the stabilizer rank of magic
states

Hammam Qassim *t § Hakop Pashayan *11 David Gosset *1

June 16, 2021

= improved stabiliser decompositions, including 6-to-6 decomp
(giving a ~ 0.431 instead of a ~ 0.467),
and other decomps giving a < 0.40.
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Qassim et al. uses cat states:
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Cat states

Qassim et al. uses cat states:

ats) = 057+ 29T = i (@7 + @)

These actually have nice representation in ZX:
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Cat decompositions

They find good decomp of |cate):
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So, if we only have |catg) diagrams, we would have o =~ 0.264.
But we can do even better!
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This would give a = 0.25.
Using these we get good decompositions for |caty) with k < 6.
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Phase gadgets are cat states

We find cat states as phase gadgets:
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So n-legged phase gadget is |cat,+1) state.

So as long as there are phase gadgets with < 5 legs, we can use
these decompositions.



Partial stabiliser decomp

But what if there are no phase gadgets?

Then we can do the following ‘partial’ decomp:
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This trades 5 magic states for 3 terms with 1 magic per term.
So effectively removes 4 magic states.
This is then a 4-to-3 decomp: a ~ 0.396.



Full strategy

We are hence looking for the following things to decompose:
1. a phase gadget with 3 legs (a = 0.25),
2. a phase gadget with 5 legs (o =~ 0.264),

4. a phase gadget with 2 legs (o = 1/3 ~ 0.333),

(
3. a phase gadget with 4 legs (o ~ 0.317),
(
5. any 5 T-spiders (a = 0.396).



So how well does all this work?
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Asymptotic benefit
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Worst case: no T-like phases killed during simplification.
Then every diagram only needs constant number of rewrites.
Size of diagrams are O(k), so a rewrite costs O(k?).

There are O(22K) diagrams, so total cost is O(27%k?).
(Bravyi et al., 2016) gave O(2°k3).

Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.



Actual benefit

We benchmarked our method on two families of circuits:

» 50- and 100-qubit random Clifford+T circuits built out of
Pauli exponentials.

» 50-qubit hidden-shift circuits (type of CCZ circuit).

We are sampling from the output distribution
(using strong simulation).

Code is implemented in quizx, a Rust port of PyZX.



Benchmark: Clifford+T

== 50 qubits == 100 qubits
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Percentage of random 50- and 100-qubit circuits of a given
T-count that were successfully sampled in under 5 minutes.
For each T-count 50 random circuits were generated.



Benchmark: Clifford+T cat-decomp comparison
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Benchmark: hidden-shift circuit term reduction

Reduction vs. naive BSS Reduction vs. simplified BSS
decomposition decomposition
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Reduction in term count on 50-qubit hidden shift circuits vs. naive
BSS decomposition (left) and BSS decomposition after single
ZX-simplification (right).



Benchmark: hidden-shift 50-qubit simulation time
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The time distribution of simulating 100 random 50-qubit
hidden-shift circuits with T-count 1400 using our new
decompositions.
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Conclusions

» Using ZX we can greatly speed-up stabiliser rank simulations.
» Especially for structured circuits.

» It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.
Future work:

» Use more diagram optimisations and decompositions

» Find heuristics for picking good spiders to decompose.

> Approximate simulation and better weak simulation.

» Use quantum measurement w/o computing marginals
technique.



Thank you for your attention!

Further reading:

» Kissinger & vdW. Simulating quantum circuits with
ZX-calculus reduced stabiliser decompositions.
arXiv: 2109.01076

» Kissinger, Vilmart & vdW. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions.
arXiv: 2202.09202

» Qassim, Pashayan, Gosset. Improved upper bounds on the
stabilizer rank of magic states.
arXiv: 2106.07740

» Bravyi, Gosset. Improved classical simulation of quantum

circuits dominated by Clifford gates.
arXiv: 1601.07601



