Classical simulation of quantum circuits with
partial and graphical stabiliser decompositions

Aleks Kissinger University of Oxford
Renaud Vilmart Inria Saclay
John van de Wetering Radboud University & Oxford

TQC - July 13th 2022

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.
Broadly, two ways to do this:
» Tensor-network based methods:
P direct state simulation
» principle component analysis
» contraction order finding

> edge cutting
>

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.
Broadly, two ways to do this:
» Tensor-network based methods:

> direct state simulation

» principle component analysis
» contraction order finding

> edge cutting

>

» Stabiliser-decomposition based methods:

» Stabiliser extent
» Stabiliser rank < This talk

Simulating using stabiliser rank

Start with Clifford+T circuit.

Write each T gate as magic state injection.

Efficiently simulate resulting Clifford circuits.

>
>
» Decompose T states into sum of stabilisers.
>
> Add results together.

>

We're done!

Simulating using stabiliser rank

Start with Clifford+T circuit.

Write each T gate as magic state injection.

>
>
» Decompose T states into sum of stabilisers.
> Efficiently simulate resulting Clifford circuits.
> Add results together.

>

We're done!

What's the catch?
Stabiliser rank of k T states scales exponentially with k.
... But it's not just 2% terms. We can do better!

Stabiliser ranks of T magic states

Recall |T) o [0) + e/™/4[1).
So x(|T)) = 2 and hence x(| T)®k) < 2k,

Stabiliser ranks of T magic states

Recall ’T> x ‘0> _|_ei7r/4’1>.
So Xx(|T)) = 2 and hence x(|T)®k) < 2k.

But also x (]| T)®?) = 2, so:

(| TY®F) = ((| T)®2)®K/2) < 2K/2 = 205k,

Stabiliser ranks of T magic states

Recall |T) o |0) + e/™/*]1).
So x(]T)) = 2 and hence x(| T)®k) < 2k,

But also x (]| T)®?) = 2, so:
X(’T>®k) — X((’T>®2)®k/2) < 2k/2 — 20.5k'

Turns out x(| T)®%) < 7 so
x(| T)Y®K) < 29K where a = log,(7)/6 ~ 0.467.
Found by Bravyi, Smith, Smolin (BSS) in 2016.

Even have x(|T)®°) = 6 (previous talk): « ~ 0.431.

Our idea

Do stabiliser rank decompositions,
but with ZX-diagrams instead of circuits!

Benefit 1: optimise intermediate ZX-diagrams to reduce T-count.
Benefit 2: Can use fancier stabiliser decompositions.

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider
el 1)1 1 L N-- - ,

o

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider
el 1)1 1 L N-- - ,

o

For example:

= tokol+einial = (5 o)+ (5 &) = (5 o)

——
—@— = |+N+H|+e Y| = 1(} D*leic«l _1>

2 2 -1 1

Spiders cont.

If & =0 we drop the label:

>< = |0---0}0---0| +[1---1)1---1]

Spiders cont.

If & =0 we drop the label:

NE - b

0)0 -+ 0| 4 [1---1)1---1]
Mot o | = =
= o) +11)

)

Formal composition

Spiders can be composed in two ways.

Formal composition

Spiders can be composed in two ways.
Vertical composition gives tensor product:

{:

O O o
= O O O

4 -

I
coow

= O O O

OO O OO oOoo

OO O OO oo

O R O OOOOoOOo

_H O O O OO oo

Formal composition

Horizontal composition is regular composition of linear maps:

1000
0100

0 00O
0010

0 001

|

10010000

000O0O0OT1T1O0

Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions

Symmetries
Note:

Hence, we may write

Symmetries
Note:

Hence, we may write

D

In general: only connectivity matters

New algorithm

» Write Clifford+T circuit as ZX-diagram.

New algorithm

» Write Clifford+T circuit as ZX-diagram.
» Simplify diagram with your favourite algorithm.

New algorithm

» Write Clifford+T circuit as ZX-diagram.
» Simplify diagram with your favourite algorithm.
» Pick some spiders with T-like phase and decompose them.

New algorithm

» Write Clifford+T circuit as ZX-diagram.
» Simplify diagram with your favourite algorithm.
» Pick some spiders with T-like phase and decompose them.

» Simplify resulting sum of diagrams.

New algorithm

vVvYyyVvyy

Write Clifford+T circuit as ZX-diagram.

Simplify diagram with your favourite algorithm.

Pick some spiders with T-like phase and decompose them.
Simplify resulting sum of diagrams.

Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

New algorithm

vVvYyyVvyy

v

Write Clifford+T circuit as ZX-diagram.

Simplify diagram with your favourite algorithm.

Pick some spiders with T-like phase and decompose them.
Simplify resulting sum of diagrams.

Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

Simply evaluate all the diagrams to get your outcome!

New algorithm

vVvYyyVvyy

>

Write Clifford+T circuit as ZX-diagram.

Simplify diagram with your favourite algorithm.

Pick some spiders with T-like phase and decompose them.
Simplify resulting sum of diagrams.

Repeat decomposition+optimisation
until diagrams have reached desired simplicity.

Simply evaluate all the diagrams to get your outcome!

Let's go through these steps in more detail.

> Writing circuit as ZX-diagram
» Optimising ZX-diagram
» Decomposing magic states

Writing Clifford+T circuit as ZX-diagram

CNOT = V2 i S=—G— Had = —o—
T=-—0— W=5@ =@ (e

Writing Clifford+T circuit as ZX-diagram

CNOT = V2 i S=—G— Had = —o—
T=-—0— W=5@ =@ (e

Calculating single amplitude:

|
08

2

(%|U[0---0) = (%)2 o | U -

X
®

Marginal probabilities

To calculate marginal probability, use doubling technique:

o— o
V) Ut
o— ——o0

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.

We are doing exact strong simulation here.

» Writing circuit as ZX-diagram v’
» Optimising ZX-diagram
» Decomposing magic states

Simplifying ZX-diagrams

We use strategy from our previous paper
Reducing T-count with the ZX-calculus.

Simplifying ZX-diagrams

We use strategy from our previous paper
Reducing T-count with the ZX-calculus.
This transforms every ZX-diagram into something like this:

@@@ 909 00 @

Properties of reduced diagram

The important part:
» Every spider carries a non-Clifford phase,

» or is part of a phase gadget: @G<

Properties of reduced diagram

The important part:

» Every spider carries a non-Clifford phase,
» or is part of a phase gadget: @G<

Particularly: if original circuit had k T gates,
resulting diagram has < 2k spiders
(regardless of #qubits or #gates).

» Writing circuit as ZX-diagram v’
» Optimising ZX-diagram v/
» Decomposing magic states

Decomposing T-like spiders

The 6-to-7 magic state decomposition in ZX is:

b LT dddod
a0 00000 o0

o iiiiéw“* éié

Applying the decomposition
We pick some spiders to decompose and unfuse the phases:

® ®00®0O O © 00 OO 600 ® ©
: & 088 8 O

And now we can apply the magic state decomposition.

Better decompositions

Improved upper bounds on the stabilizer rank of magic
states

Hammam Qassim *t § Hakop Pashayan *11 David Gosset *1

June 16, 2021

= improved stabiliser decompositions, including 6-to-6 decomp
(giving a ~ 0.431 instead of a ~ 0.467),
and other decomps giving a < 0.40.

Cat states

Qassim et al. uses cat states:

st = 5074 2T = (- + @)

S

Cat states

Qassim et al. uses cat states:

ats) = 057+ 29T = i (@7 + @)

These actually have nice representation in ZX:

66

| cat,) =

Sl
Qg’i_

Cat decompositions

They find good decomp of |cate):

Cat decompositions

They find good decomp of |cate):

_ 1 i/t
=1 + =5 Q

&~
-@-
G-

SEEEYe

(é,f‘ (?’(,— <? (\P \.\? “\\\?

So, if we only have |catg) diagrams, we would have o =~ 0.264.

Cat decompositions

They find good decomp of |cate):

_ 1 i/t
=1 + =5 Ci

&~
-@-
G-

SEEEYe

(é,f‘ (?/— <? (\P \.\? “\\?

h6S
So, if we only have |catg) diagrams, we would have o =~ 0.264.
But we can do even better!

(o ot [
NSy v2 "o
. \\0

This would give a = 0.25.

Cat decompositions

They find good decomp of |cate):

jeim/4 ‘
+ =5 Q

&~
[go
@

(é/' (?,," (P (\P \\? \“\\?

h6S
So, if we only have |catg) diagrams, we would have o =~ 0.264.
But we can do even better!

d"i" _ ﬂ Iy ,.':':/--(}
NSy v2 "o
. \\0

This would give a = 0.25.
Using these we get good decompositions for |caty) with k < 6.

Phase gadgets are cat states

We find cat states as phase gadgets:

= (D
@Ca+))3) - (2ktD)})

So n-legged phase gadget is |cat,+1) state.

Phase gadgets are cat states

We find cat states as phase gadgets:

@09 g5 - g
- ®

/‘/O\“\
(@a+1)7) - (Ck+1)F)

So n-legged phase gadget is |cat,+1) state.

So as long as there are phase gadgets with < 5 legs, we can use
these decompositions.

Partial stabiliser decomp

But what if there are no phase gadgets?

Then we can do the following ‘partial’ decomp:

=4 g = 2GL eavEe L avaenl
o

This trades 5 magic states for 3 terms with 1 magic per term.
So effectively removes 4 magic states.
This is then a 4-to-3 decomp: a ~ 0.396.

Full strategy

We are hence looking for the following things to decompose:
1. a phase gadget with 3 legs (a = 0.25),
2. a phase gadget with 5 legs (o =~ 0.264),

4. a phase gadget with 2 legs (o = 1/3 ~ 0.333),

(
3. a phase gadget with 4 legs (o ~ 0.317),
(
5. any 5 T-spiders (a = 0.396).

So how well does all this work?

Asymptotic benefit

> Worst case: no T-like phases killed during simplification.

Asymptotic benefit

> Worst case: no T-like phases killed during simplification.

» Then every diagram only needs constant number of rewrites.

Asymptotic benefit

> Worst case: no T-like phases killed during simplification.
» Then every diagram only needs constant number of rewrites.

> Size of diagrams are O(k), so a rewrite costs O(k?).

Asymptotic benefit

> Worst case: no T-like phases killed during simplification.

» Then every diagram only needs constant number of rewrites.
> Size of diagrams are O(k), so a rewrite costs O(k?).

> There are O(2°) diagrams, so total cost is O(2%%k?).

Asymptotic benefit

vVvYvyVvYyVvyy

Worst case: no T-like phases killed during simplification.
Then every diagram only needs constant number of rewrites.
Size of diagrams are O(k), so a rewrite costs O(k?).

There are O(22K) diagrams, so total cost is O(27%k?).
(Bravyi et al., 2016) gave O(2°k3).

Benefit comes from preventing ‘double work’: we ‘partially
evaluate’ the stabilisers by simplifying the diagrams.

Actual benefit

We benchmarked our method on two families of circuits:

» 50- and 100-qubit random Clifford+T circuits built out of
Pauli exponentials.

» 50-qubit hidden-shift circuits (type of CCZ circuit).

We are sampling from the output distribution
(using strong simulation).

Code is implemented in quizx, a Rust port of PyZX.

Benchmark: Clifford+T

== 50 qubits == 100 qubits

100

75

50

% successful

25

10 20 30 40 50 60 70

T count

Percentage of random 50- and 100-qubit circuits of a given
T-count that were successfully sampled in under 5 minutes.
For each T-count 50 random circuits were generated.

Benchmark: Clifford+T cat-decomp comparison

0,1

0,01

Time (s)

- Cat states

0,001 BSS

0,0001
1E-05
1E-06

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

T-count

Runtime of random 20-qubit Clifford+T circuit simulations
(avg of 10 runs per T-count).

Benchmark: hidden-shift circuit term reduction

Reduction vs. naive BSS Reduction vs. simplified BSS
decomposition decomposition
w .
L4 .
. s
300 [}
3 . H ° o ; b °
2 g s ° ® [° °
< ° £ ® 3
E . £ o s i ' § ¢
H . H oo 88 00 i $ °
g [] g b] ' I .
2 L] 3 [3
o E
o > ' l '
® s
Ld
0 560 700 840 980 1120 1260 bad ° o 140 280 420 560 700 840 980 1120 1260 1400

Reduction in term count on 50-qubit hidden shift circuits vs. naive
BSS decomposition (left) and BSS decomposition after single
ZX-simplification (right).

Benchmark: hidden-shift 50-qubit simulation time

40
35
30
25

20

Number of runs

90 120 150 180 210 240 270 300 330 360

Time (s)

The time distribution of simulating 100 random 50-qubit
hidden-shift circuits with T-count 1400 using our new
decompositions.

Conclusions

» Using ZX we can greatly speed-up stabiliser rank simulations.
» Especially for structured circuits.

» It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Conclusions

» Using ZX we can greatly speed-up stabiliser rank simulations.
» Especially for structured circuits.

» It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.

Conclusions

» Using ZX we can greatly speed-up stabiliser rank simulations.
» Especially for structured circuits.

» It allows us to use better decompositions for substructures of
diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.
Future work:

» Use more diagram optimisations and decompositions

» Find heuristics for picking good spiders to decompose.

> Approximate simulation and better weak simulation.

» Use quantum measurement w/o computing marginals
technique.

Thank you for your attention!

Further reading:

» Kissinger & vdW. Simulating quantum circuits with
ZX-calculus reduced stabiliser decompositions.
arXiv: 2109.01076

» Kissinger, Vilmart & vdW. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions.
arXiv: 2202.09202

» Qassim, Pashayan, Gosset. Improved upper bounds on the
stabilizer rank of magic states.
arXiv: 2106.07740

» Bravyi, Gosset. Improved classical simulation of quantum

circuits dominated by Clifford gates.
arXiv: 1601.07601

