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“The only difference between a probabilistic classical
world and the equations of the quantum world is that
somehow or other it appears as if the probabilities would
have to go negative.”

— Richard Feynman, 1981
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A bit of background

e Wigner (1932): Representing a quantum state as a
distribution over classical phase space allowing negative
probabilities.
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A bit of background

e Wigner (1932): Representing a quantum state as a
distribution over classical phase space allowing negative
probabilities.

o Negativity in representations is “equivalent” to contextuality
(Spekkens 2008).

e Quantum speed up requires sufficient negativity in
representations (Pashayan, Walman & Bartlett 2015).
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Related work

e Appleby, Fuchs, Stacey, Zhu 2016 “Introducing the Qplex”.
e Hardy 2013 “The duotensor framework”

e Ferrie & Emerson 2008 “Frame representations of quantum
mechanics”
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Informationally complete POVMs

e Let M, be the set of n X n complex matrices.

e An effectis an E € M, such that 0 < E < 1.
e A POVM is a set of effects {E;} such that > . E; = I,.
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e Let M, be the set of n X n complex matrices.

e An effectis an E € M, such that 0 < E < 1.

e A POVM is a set of effects {E;} such that > . E; = I,.

e A POVM is called informationally complete if it spans M, and

minimal informationally complete (MIC) if it is a basis. A
MIC-POVM always has n? elements.
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Informationally complete POVMs

e Let M, be the set of n X n complex matrices.
e An effectis an E € M, such that 0 < E < 1.
e A POVM is a set of effects {E;} such that > . E; = I,.

e A POVM is called informationally complete if it spans M, and
minimal informationally complete (MIC) if it is a basis. A
MIC-POVM always has n? elements.

A quantum state is p € M, such that p > 0 and tr(p) = 1.
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Quantum states as probability distributions

Let p € M, be a quantum state and {E;} a POVM.
— p(i) = tr(pE;) forms a probability distribution.
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Quantum states as probability distributions

Let p € M, be a quantum state and {E;} a POVM.
— p(i) = tr(pE;) forms a probability distribution.
Now suppose {E;} is MIC, then it is a basis

so there are coefficients a such that

E;
. ;%r(@)
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so there are coefficients a such that
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Quantum states as probability distributions - cont.

() = tr(pE;) = a;tr i i
p(i) = tr(pEi) ; jt <tr(Ej)E,>

Define the transition matrix T; = tr E E ).
w(E)
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Quantum states as probability distributions - cont.

() = tr(pE;) = a;tr i i
p(i) = tr(pEi) ; jt <tr(Ej)E,>

Define the transition matrix Tj = tr< 5 )E,->

tr(Ej
then we can succinctly write

p=Ta or equivalently a=T71p

Which allows us to reconstruct the original state:

p= Z(Tlp)itré)
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Quantum states as probability distributions - cont.

() = tr(pE;) = a;tr i i
p(i) = tr(pEi) ; jt <tr(Ej)E,>

Define the transition matrix Tj = tr< 5 )E,->

tr(Ej
then we can succinctly write

p=Ta or equivalently a=T71p

Which allows us to reconstruct the original state:

p= Z(Tlp)itré)

NOTE: T! can contain negative components!
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The transition matrix T is an example of a stochastic matrix.
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(quasi-)stochasticity

The transition matrix T is an example of a stochastic matrix.

A real-valued matrix S is called stochastic when S;; € R>q for
all i,j and all the columns sum up to 1.

e It is quasi-stochastic when the positivity requirement is
dropped.

e S is doubly (quasi-)stochastic when its transpose is also
(quasi-)stochastic.

Stochastic matrices are precisely those matrices that map the
space of probability distributions to itself.
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(quasi-)stochasticity

The transition matrix T is an example of a stochastic matrix.

A real-valued matrix S is called stochastic when S;; € R>q for
all i,j and all the columns sum up to 1.

e It is quasi-stochastic when the positivity requirement is
dropped.

e S is doubly (quasi-)stochastic when its transpose is also
(quasi-)stochastic.

Stochastic matrices are precisely those matrices that map the
space of probability distributions to itself.
S stochastic % S~ stochastic (when it exists).
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Quantum channels as quasi-stochastic matrices

Let & : M, = M,, be a CPTP-map and fix MIC-POVMs {E;} and
{EJ’} on respectively M,, and M,,. Let T be the transition matrix
for {E;}.
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Quantum channels as quasi-stochastic matrices

Let & : M, = M,, be a CPTP-map and fix MIC-POVMs {E;} and
{EJ’} on respectively M,, and M,,. Let T be the transition matrix
for {E;}. Let p € M, and 0 = ®(p). Recall

p(i) = tr(pEi) = p= Z(T_lp)itr(Eéi)

J. van de Wetering QPL2017 quasi-stochastic representations



Quantum channels as quasi-stochastic matrices

Radboud University Nijmege

Quantum channels as quasi-stochastic matrices

Let & : M, = M,, be a CPTP-map and fix MIC-POVMs {E;} and
{EJ’} on respectively M,, and M,,. Let T be the transition matrix
for {E;}. Let p € M, and 0 = ®(p). Recall

p(i) = tr(pEi) = p= Z(T_lp)itr(Eéi)

— q(i) :==tr(cE]) = tr(®(p)E]) = Z(T_lp)jtr(¢ (trf;—;_j)>

Jj
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Quantum channels as quasi-stochastic matrices

Let & : M, = M,, be a CPTP-map and fix MIC-POVMs {E;} and
{EJ’} on respectively M,, and M,,. Let T be the transition matrix
for {E;}. Let p € M, and 0 = ®(p). Recall

p(i) = tr(pEi) = p= Z(T_lp)itr(Eéi)

i) :=tr(cE]) =tr /) = “p)jtr
— q(i) := tr(0E}) = tr(®(p)E)) ?T Pljt ("’ (tr(Ej))
Define

Then g = Q(®)T1p
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Now that we've got that out of the way...

...time for some new stuff
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Quantum channels as quasi-stochastic matrices - cont.

® : My — My and W : My, — My with MIC-POVMSs {E}, {E/}
and {E/"}, and transition matrices T, T’ and T".

J. van de Wetering QPL2017 quasi-stochastic representations 11 /18



Quantum channels as quasi-stochastic matrices

Radboud University Nijmegen g%

k7 O
MiNes

Quantum channels as quasi-stochastic matrices - cont.

® : My — My and W : My, — My with MIC-POVMSs {E}, {E/}
and {E/"}, and transition matrices T, T’ and T". Write

!

Q(®); = tr<¢ (tré)) E{) Q) =tr| W tréj) E/

and set 7 = (Vo ®)(p) with distribution r(i) = tr(TE/").
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Quantum channels as quasi-stochastic matrices - cont.

® : My — My and W : My, — My with MIC-POVMSs {E}, {E/}
and {E/"}, and transition matrices T, T’ and T". Write

!

Q(®); = tr<¢ (tré)) E{) Q) =tr| W tréj) E/

and set 7 = (Vo ®)(p) with distribution r(i) = tr(TE/").

= r=QW)(T)Q(®)T'p
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Quantum channels as quasi-stochastic matrices - cont.

® : My — My and W : My, — My with MIC-POVMSs {E}, {E/}
and {E/"}, and transition matrices T, T’ and T". Write

!

Q(®); = tr<¢ (tré)) E{) Q) =tr| W tréj) E/

and set 7 = (Vo ®)(p) with distribution r(i) = tr(TE/").

= r=QW)(T)Q(®)T'p

= Q(Vo®) = Q(V)(T)Q(®)
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Quantum theory as a quasi-stochastic process theory

Definition

Let CPTP be the category with objects natural numbers and
morphisms CPTP maps ¢ : M, — M.

Let QStoch be the category with objects natural numbers and
morphisms quasi-stochastic matrices.

Note: Density matrices are equivalent to p: My = C — M,,.
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Quantum theory as a quasi-stochastic process theory

Definition

Let CPTP be the category with objects natural numbers and
morphisms CPTP maps ¢ : M, — M.

Let QStoch be the category with objects natural numbers and
morphisms quasi-stochastic matrices.

Note: Density matrices are equivalent to p: My = C — M,,.

Fix Vn € N MIC-POVMs {Ei(")} with transition matrices T.
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Quantum theory as a quasi-stochastic process theory

Definition

Let CPTP be the category with objects natural numbers and
morphisms CPTP maps ¢ : M, — M.

Let QStoch be the category with objects natural numbers and
morphisms quasi-stochastic matrices.

Note: Density matrices are equivalent to p: My = C — M,,.

Fix Vn € N MIC-POVMs {Ei(")} with transition matrices T.
Let Fg : CPTP — QStoch be a functor with Fg(n) = n? and
Fe(®: M, = M) = Q(®)T, ! where

n

£
Qd)j=tr| & | —L— | E™

w(E7)
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Properties of the quasi-stochastic representation

Fe : CPTP — QStoch is indeed a functor. It preserves convex
mixtures of channels and is faithful.
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Properties of the quasi-stochastic representation

Fe : CPTP — QStoch is indeed a functor. It preserves convex
mixtures of channels and is faithful.

NOTE: You actually need informationally complete POVMs to
create a nontrivial convexity preserving functor.
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Properties of the quasi-stochastic representation

Theorem

Fe : CPTP — QStoch is indeed a functor. It preserves convex
mixtures of channels and is faithful.

NOTE: You actually need informationally complete POVMs to
create a nontrivial convexity preserving functor.

A different set of MIC-POVMs gives a different functor, but:

Theorem

Any two functors Fg, Fgr : CPTP — QStoch arising from a
choice of MIC-POVMS are naturally isomorphic.
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Definition: Strong monoidal functors

A functor F : A — B is called strong monoidal if there exist

isomorphisms a4 g for every pair of objects A and B such that
ag, B, © (F(f) ® F(f)) = F(fi ® f) o aa, 4, for all morphisms
f; - Aj = B; satisfying some coherence conditions.
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Preservation of tensor product

Definition: Strong monoidal functors

A functor F : A — B is called strong monoidal if there exist
isomorphisms a4 g for every pair of objects A and B such that
ag, B, © (F(f) ® F(f)) = F(fi ® f) o aa, 4, for all morphisms
f; - Aj = B; satisfying some coherence conditions.

Theorem
The functor Fg : CPTP — QStoch is strong monoidal.

NOTE: You need minimality of the POVMs for this!
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Preservation of adjoints

Definition: Linear algebraic adjoint

Let A: (V, (")) — (W,(--)) be a a linear map. It's adjoint is a
map Al : (W,( ) = (V, (-,-)) such that

<V,ATW> = (Av,w)

e.g. adjoint of real matrix is the transpose
and adjoint of U(A) = UAU' is Ut(A) = UtAU.

The adjoint of a CPTP map is CPTP if and only if it is unital.
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Let A: (V, (")) — (W,(--)) be a a linear map. It's adjoint is a
map Al : (W,( ) = (V, (-,-)) such that

<V,ATW> = (Av,w)

e.g. adjoint of real matrix is the transpose
and adjoint of U(A) = UAU' is Ut(A) = UtAU.

The adjoint of a CPTP map is CPTP if and only if it is unital.

Question: Does Fg preserve the adjoint of unital channels?
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Preservation of adjoints

Definition: Linear algebraic adjoint

Let A: (V, (")) — (W,(--)) be a a linear map. It's adjoint is a
map Al : (W,( ) = (V, (-,-)) such that

<V,ATW> = (Av,w)

e.g. adjoint of real matrix is the transpose
and adjoint of U(A) = UAU' is Ut(A) = UtAU.

The adjoint of a CPTP map is CPTP if and only if it is unital.

Question: Does Fg preserve the adjoint of unital channels?
Answer: No! (in general)
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Symmetric Informationally Complete POVMs

A MIC-POVM {E;} is called symmetric when
Ja, B : Vi, ) tr(EEj) = adjj + B

NOTE: The usual definition requires all E; to be rank 1.
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Symmetric Informationally Complete POVMs

A MIC-POVM {E;} is called symmetric when
Ja, B : Vi, ) tr(EEj) = adjj + B
NOTE: The usual definition requires all E; to be rank 1.

Theorem

The functor Fg : CPTP — QStoch preserves the adjoint of unital
channels, e.g. F(®T) = F(®)T, if and only if all associated
MIC-POVMS are symmetric.
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Conclusion and Discussion

e Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.
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Conclusion and Discussion

Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.

Yet again a special role for symmetric IC-POVMs.

Construction also applies to causal operational probabilistic
theories.

QStoch doesn't ‘care’ about positivity. Can this be fixed?

e Can we ‘simulate’ causal OPTs using quantum theory with
these representations?
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