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“The only difference between a probabilistic classical
world and the equations of the quantum world is that

somehow or other it appears as if the probabilities would
have to go negative.”

– Richard Feynman, 1981

J. van de Wetering QPL2017 quasi-stochastic representations 2 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

A bit of background

• Wigner (1932): Representing a quantum state as a
distribution over classical phase space allowing negative
probabilities.

• Negativity in representations is “equivalent” to contextuality
(Spekkens 2008).

• Quantum speed up requires sufficient negativity in
representations (Pashayan, Walman & Bartlett 2015).
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Related work

• Appleby, Fuchs, Stacey, Zhu 2016 “Introducing the Qplex”.

• Hardy 2013 “The duotensor framework”

• Ferrie & Emerson 2008 “Frame representations of quantum
mechanics”
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Informationally complete POVMs

Definition
• Let Mn be the set of n × n complex matrices.

• An effect is an E ∈ Mn such that 0 ≤ E ≤ 1.

• A POVM is a set of effects {Ei} such that
∑

i Ei = In.

• A POVM is called informationally complete if it spans Mn and
minimal informationally complete (MIC) if it is a basis. A
MIC-POVM always has n2 elements.

Definition

A quantum state is ρ ∈ Mn such that ρ ≥ 0 and tr(ρ) = 1.
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Quantum states as probability distributions

Let ρ ∈ Mn be a quantum state and {Ei} a POVM.
→ p(i) = tr(ρEi ) forms a probability distribution.

Now suppose {Ei} is MIC, then it is a basis
so there are coefficients α such that

ρ =
∑
j

αj
Ej

tr(Ej)

Now:

p(i) = tr(ρEi ) =
∑
j

αj tr

(
Ej

tr(Ej)
Ei

)
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Quantum states as probability distributions - cont.

p(i) = tr(ρEi ) =
∑
j

αj tr

(
Ej

tr(Ej)
Ei

)

Define the transition matrix Tij = tr

(
Ej

tr(Ej)
Ei

)
.

then we can succinctly write

p = Tα or equivalently α = T−1p

Which allows us to reconstruct the original state:

ρ =
∑
i

(T−1p)i
Ei

tr(Ei )

NOTE: T−1 can contain negative components!
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(quasi-)stochasticity

The transition matrix T is an example of a stochastic matrix.

Definition
• A real-valued matrix S is called stochastic when Sij ∈ R≥0 for

all i , j and all the columns sum up to 1.

• It is quasi-stochastic when the positivity requirement is
dropped.

• S is doubly (quasi-)stochastic when its transpose is also
(quasi-)stochastic.

Stochastic matrices are precisely those matrices that map the
space of probability distributions to itself.
S stochastic 6⇒ S−1 stochastic (when it exists).
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Quantum channels as quasi-stochastic matrices

Let Φ : Mn → Mm be a CPTP-map and fix MIC-POVMs {Ei} and
{E ′j } on respectively Mn and Mm. Let T be the transition matrix
for {Ei}.

Let ρ ∈ Mn and σ = Φ(ρ). Recall

p(i) := tr(ρEi ) ⇒ ρ =
∑
i

(T−1p)i
Ei

tr(Ei )

→ q(i) := tr
(
σE ′i
)

= tr
(
Φ(ρ)E ′i

)
=
∑
j

(T−1p)j tr

(
Φ

(
Ej

tr(Ej)

)
E ′i

)
Define

Q(Φ)ij = tr

(
Φ

(
Ej

tr(Ej)

)
E ′i

)
Then q = Q(Φ)T−1p
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Now that we’ve got that out of the way...

...time for some new stuff
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Quantum channels as quasi-stochastic matrices - cont.

Φ : Mn → Mm and Ψ : Mm → Mk with MIC-POVMs {Ei}, {E ′i }
and {E ′′i }, and transition matrices T , T ′ and T ′′.

Write

Q(Φ)ij = tr

(
Φ

(
Ej

tr(Ej)

)
E ′i

)
Q(Ψ)ij = tr

Ψ

 E ′j

tr
(
E ′j

)
E ′′i


and set τ = (Ψ ◦ Φ)(ρ) with distribution r(i) = tr(τE ′′i ).

→ r = Q(Ψ)(T ′)−1Q(Φ)T−1p

→ Q(Ψ ◦ Φ) = Q(Ψ)(T ′)−1Q(Φ)
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Quantum theory as a quasi-stochastic process theory

Definition

Let CPTP be the category with objects natural numbers and
morphisms CPTP maps Φ : Mn → Mm.
Let QStoch be the category with objects natural numbers and
morphisms quasi-stochastic matrices.
Note: Density matrices are equivalent to ρ̂ : M1 = C→ Mn.

Fix ∀n ∈ N MIC-POVMs {E (n)
i } with transition matrices Tn.

Let FE : CPTP → QStoch be a functor with FE (n) = n2 and
FE (Φ : Mn → Mm) = Q(Φ)T−1n where

Q(Φ)ij = tr

Φ

 E
(n)
j

tr
(
E
(n)
j

)
E

(m)
i
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Properties of the quasi-stochastic representation

Theorem

FE : CPTP → QStoch is indeed a functor. It preserves convex
mixtures of channels and is faithful.

NOTE: You actually need informationally complete POVMs to
create a nontrivial convexity preserving functor.

A different set of MIC-POVMs gives a different functor, but:

Theorem

Any two functors FE ,FE ′ : CPTP → QStoch arising from a
choice of MIC-POVMS are naturally isomorphic.
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Preservation of tensor product

Definition: Strong monoidal functors

A functor F : A→ B is called strong monoidal if there exist
isomorphisms αA,B for every pair of objects A and B such that
αB1,B2 ◦ (F (f1)⊗ F (f2)) = F (f1 ⊗ f2) ◦ αA1,A2 for all morphisms
fi : Ai → Bi satisfying some coherence conditions.

Theorem

The functor FE : CPTP → QStoch is strong monoidal.

NOTE: You need minimality of the POVMs for this!
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Preservation of adjoints

Definition: Linear algebraic adjoint

Let A : (V , 〈·, ·〉)→ (W , 〈·, ·〉) be a a linear map. It’s adjoint is a
map A† : (W , 〈·, ·〉)→ (V , 〈·, ·〉) such that

〈v ,A†w〉 = 〈Av ,w〉

e.g. adjoint of real matrix is the transpose
and adjoint of Û(A) = UAU† is Û†(A) = U†AU.

The adjoint of a CPTP map is CPTP if and only if it is unital.

Question: Does FE preserve the adjoint of unital channels?
Answer: No! (in general)

J. van de Wetering QPL2017 quasi-stochastic representations 15 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

Preservation of adjoints

Definition: Linear algebraic adjoint

Let A : (V , 〈·, ·〉)→ (W , 〈·, ·〉) be a a linear map. It’s adjoint is a
map A† : (W , 〈·, ·〉)→ (V , 〈·, ·〉) such that

〈v ,A†w〉 = 〈Av ,w〉

e.g. adjoint of real matrix is the transpose
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Symmetric Informationally Complete POVMs

Definition

A MIC-POVM {Ei} is called symmetric when

∃α, β : ∀i , j : tr(EiEj) = αδij + β

NOTE: The usual definition requires all Ei to be rank 1.

Theorem

The functor FE : CPTP → QStoch preserves the adjoint of unital
channels, e.g. F (Φ†) = F (Φ)†, if and only if all associated
MIC-POVMS are symmetric.
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Conclusion and Discussion

• Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.

• Yet again a special role for symmetric IC-POVMs.

• Construction also applies to causal operational probabilistic
theories.

• QStoch doesn’t ‘care’ about positivity. Can this be fixed?

• Can we ‘simulate’ causal OPTs using quantum theory with
these representations?

J. van de Wetering QPL2017 quasi-stochastic representations 17 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

Conclusion and Discussion

• Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.

• Yet again a special role for symmetric IC-POVMs.

• Construction also applies to causal operational probabilistic
theories.

• QStoch doesn’t ‘care’ about positivity. Can this be fixed?

• Can we ‘simulate’ causal OPTs using quantum theory with
these representations?

J. van de Wetering QPL2017 quasi-stochastic representations 17 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

Conclusion and Discussion

• Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.

• Yet again a special role for symmetric IC-POVMs.

• Construction also applies to causal operational probabilistic
theories.

• QStoch doesn’t ‘care’ about positivity. Can this be fixed?

• Can we ‘simulate’ causal OPTs using quantum theory with
these representations?

J. van de Wetering QPL2017 quasi-stochastic representations 17 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

Conclusion and Discussion

• Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.

• Yet again a special role for symmetric IC-POVMs.

• Construction also applies to causal operational probabilistic
theories.

• QStoch doesn’t ‘care’ about positivity. Can this be fixed?

• Can we ‘simulate’ causal OPTs using quantum theory with
these representations?

J. van de Wetering QPL2017 quasi-stochastic representations 17 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

Conclusion and Discussion

• Language of category theory is a good fit for talking about
quasi-stochastic representations of quantum theory.

• Yet again a special role for symmetric IC-POVMs.

• Construction also applies to causal operational probabilistic
theories.

• QStoch doesn’t ‘care’ about positivity. Can this be fixed?

• Can we ‘simulate’ causal OPTs using quantum theory with
these representations?

J. van de Wetering QPL2017 quasi-stochastic representations 17 / 18



Introduction
Quantum states as probability distributions

Quantum channels as quasi-stochastic matrices
Quantum theory as a quasi-stochastic process theory

Conclusion and Discussion
Radboud University Nijmegen

Thank you for your attention
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