Supercharging classical simulation of quantum circuits with the ZX-calculus

Aleks Kissinger University of Oxford
Renaud Vilmart Inria Saclay
John van de Wetering Radboud University \& Oxford

$$
\text { QPL - June 27, } 2022
$$

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits. Broadly, two ways to do this:

- Tensor-network based methods:
- direct state simulation
- principle component analysis
- contraction order finding
- edge cutting
- ...

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits. Broadly, two ways to do this:

- Tensor-network based methods:
- direct state simulation
- principle component analysis
- contraction order finding
- edge cutting
- Stabiliser-decomposition based methods:
- Stabiliser extent
- Stabiliser rank \leftarrow This talk

Stabiliser rank

Gottesman-Knill Theorem
A quantum computation consisting of

- stabiliser states,
- Clifford unitaries,
- stabiliser measurements,
can be efficiently classically simulated.

Stabiliser rank

Gottesman-Knill Theorem

A quantum computation consisting of

- stabiliser states,
- Clifford unitaries,
- stabiliser measurements,
can be efficiently classically simulated.
Observation: Stabiliser states span entire space of states. So:

$$
|\psi\rangle=\sum_{j=1}^{\chi} \lambda_{j}\left|\psi_{j}\right\rangle \text { where }\left|\psi_{j}\right\rangle \text { is stabiliser. }
$$

χ is called stabiliser rank of $|\psi\rangle$.

Simulating using stabiliser rank

- Start with Clifford+T circuit.
- Write each T gate as magic state injection.
- Decompose T states into sum of stabilisers.
- Efficiently simulate resulting Clifford circuits.
- Add results together.
- We're done!

Simulating using stabiliser rank

- Start with Clifford+T circuit.
- Write each T gate as magic state injection.
- Decompose T states into sum of stabilisers.
- Efficiently simulate resulting Clifford circuits.
- Add results together.
- We're done!

What's the catch?
Stabiliser rank of $k T$ states scales exponentially with k.
... But it's not just 2^{k} terms. We can do better!

Stabiliser ranks of T magic states

Recall $|T\rangle \propto|0\rangle+e^{i \pi / 4}|1\rangle$.

So $\chi(|T\rangle)=2$ and hence $\chi\left(|T\rangle^{\otimes k}\right) \leq 2^{k}$.

Stabiliser ranks of T magic states

Recall $|T\rangle \propto|0\rangle+e^{i \pi / 4}|1\rangle$.
So $\chi(|T\rangle)=2$ and hence $\chi\left(|T\rangle^{\otimes k}\right) \leq 2^{k}$.
But:

$$
\begin{aligned}
|T\rangle^{\otimes 2} & \propto|00\rangle+e^{i \pi / 4}|01\rangle+e^{i \pi / 4}|10\rangle+e^{i \pi / 2}|11\rangle \\
& =(|00\rangle+i|11\rangle)+e^{i \pi / 4}(|01\rangle+|10\rangle)
\end{aligned}
$$

Stabiliser ranks of T magic states

Recall $|T\rangle \propto|0\rangle+e^{i \pi / 4}|1\rangle$.
So $\chi(|T\rangle)=2$ and hence $\chi\left(|T\rangle^{\otimes k}\right) \leq 2^{k}$.
But:

$$
\begin{aligned}
|T\rangle^{\otimes 2} & \propto|00\rangle+e^{i \pi / 4}|01\rangle+e^{i \pi / 4}|10\rangle+e^{i \pi / 2}|11\rangle \\
& =(|00\rangle+i|11\rangle)+e^{i \pi / 4}(|01\rangle+|10\rangle)
\end{aligned}
$$

Hence $\chi\left(|T\rangle^{\otimes 2}\right)=2$ so that

$$
\chi\left(|T\rangle^{\otimes k}\right)=\chi\left(\left(|T\rangle^{\otimes 2}\right)^{\otimes k / 2}\right) \leq 2^{k / 2}=2^{0.5 k}
$$

Stabiliser ranks of T magic states

Recall $|T\rangle \propto|0\rangle+e^{i \pi / 4}|1\rangle$.
So $\chi(|T\rangle)=2$ and hence $\chi\left(|T\rangle^{\otimes k}\right) \leq 2^{k}$.
But:

$$
\begin{aligned}
|T\rangle^{\otimes 2} & \propto|00\rangle+e^{i \pi / 4}|01\rangle+e^{i \pi / 4}|10\rangle+e^{i \pi / 2}|11\rangle \\
& =(|00\rangle+i|11\rangle)+e^{i \pi / 4}(|01\rangle+|10\rangle)
\end{aligned}
$$

Hence $\chi\left(|T\rangle^{\otimes 2}\right)=2$ so that

$$
\chi\left(|T\rangle^{\otimes k}\right)=\chi\left(\left(|T\rangle^{\otimes 2}\right)^{\otimes k / 2}\right) \leq 2^{k / 2}=2^{0.5 k}
$$

Turns out $\chi\left(|T\rangle^{\otimes 6}\right) \leq 7$ so
$\chi\left(|T\rangle^{\otimes k}\right) \leq 2^{\alpha k}$ where $\alpha=\log _{2}(7) / 6 \approx 0.467$.
Found by Bravyi, Smith, Smolin (BSS) in 2016.

Our idea

Do this simulation, but with $Z X$-diagrams instead of circuits!
Benefit: optimise intermediate ZX-diagrams to reduce T-count.

Our idea

Do this simulation, but with $Z X$-diagrams instead of circuits!
Benefit: optimise intermediate ZX-diagrams to reduce T-count.
Described in two papers:

- Kissinger \& vdW. Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions. arXiv:2109.01076
- Kissinger, Vilmart \& vdW. Classical simulation of quantum circuits with partial and graphical stabiliser decompositions. arXiv:2202.09202

New algorithm

- Write Clifford+T circuit as ZX-diagram.

New algorithm

- Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.

New algorithm

- Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.

New algorithm

- Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.

New algorithm

- Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.
- Repeat decomposition+optimisation until diagrams have reached desired simplicity.

New algorithm

- Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.
- Repeat decomposition+optimisation until diagrams have reached desired simplicity.
- Simply evaluate all the diagrams to get your outcome!

New algorithm

- Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.
- Repeat decomposition+optimisation until diagrams have reached desired simplicity.
- Simply evaluate all the diagrams to get your outcome!

Let's go through these steps in more detail.

Writing Clifford+T circuit as ZX-diagram

$$
\begin{aligned}
& \text { CNOT }=\sqrt{2} \square \quad \mathrm{~S}=- \text { 管— } \quad \mathrm{Had}=\square- \\
& \mathrm{T}=-\frac{\pi}{4}-\quad|x\rangle=\frac{1}{\sqrt{2}} \times \pi-\quad\langle x|=\frac{1}{\sqrt{2}}-x \pi \quad(x \in\{0,1\})
\end{aligned}
$$

Writing Clifford+T circuit as ZX-diagram

$$
\begin{aligned}
& \text { CNOT }=\sqrt{2} \square \quad \mathrm{~S}=- \text { 目 }-\quad \mathrm{Had}=\square- \\
& \mathrm{T}=\text { —— } \frac{\pi}{4}-\quad|x\rangle=\frac{1}{\sqrt{2}} \times \pi-\quad\langle x|=\frac{1}{\sqrt{2}}-x \pi \quad(x \in\{0,1\})
\end{aligned}
$$

Calculating single amplitude:

Marginal probabilities

To calculate marginal probability, use doubling technique:

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution.
Strong sim: approx. calculate any marginal probability.
We are doing exact strong simulation here.

- Writing circuit as ZX-diagram \checkmark
- Optimising ZX-diagram
- Decomposing magic states

Simplifying ZX-diagrams

We use strategy from our previous paper Reducing T-count with the $Z X$-calculus.

Simplifying ZX-diagrams

We use strategy from our previous paper Reducing T-count with the $Z X$-calculus. This transforms every ZX-diagram into something like this:

Here

Properties of reduced diagram

The important part:

- Every spider carries a non-Clifford phase,
- or is part of a phase gadget:

Properties of reduced diagram

The important part:

- Every spider carries a non-Clifford phase,
- or is part of a phase gadget:

Particularly: if original circuit had $k \mathrm{~T}$ gates, resulting diagram has $\leq 2 k$ spiders (regardless of \#qubits or \#gates).

- Writing circuit as ZX-diagram \checkmark
- Optimising ZX-diagram \checkmark
- Decomposing magic states

Decomposing T-like spiders

The 6-to-7 magic state decomposition in ZX is:

$$
\begin{aligned}
& e^{i \pi / 4} \underset{\left(1 \frac{\pi}{4}\right)}{\left(\frac{\pi}{4}\right)}\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)=+2 e^{i \pi / 4}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-2 \sqrt{2} i \quad\left(\frac{1}{2}\right)\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right) \frac{1}{2}\right)-2 i \quad\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right)\left(\frac{\pi}{2}\right)\right.
\end{aligned}
$$

Applying the decomposition

We pick some spiders to decompose and unfuse the phases:

And now we can apply the magic state decomposition.

Full algorithm

- After first decomposition we have 7 diagrams.
- Repeat whole procedure for each of these diagrams, end up with $7 * 7$ diagrams.
- Repeat until there aren't 6 magic states to decompose.
- Diagrams are then small enough to calculate value of directly.
- Sum values to get the amplitude/prob we were calculating.

Full algorithm

- After first decomposition we have 7 diagrams.
- Repeat whole procedure for each of these diagrams, end up with $7 * 7$ diagrams.
- Repeat until there aren't 6 magic states to decompose.
- Diagrams are then small enough to calculate value of directly.
- Sum values to get the amplitude/prob we were calculating.

But we can do better...

Better decompositions

Improved upper bounds on the stabilizer rank of magic

 states```
Hammam Qassim *¡\ddagger § Hakop Pashayan *\mathbb{I|}}\mathrm{ David Gosset *|
June 16, 2021
```

$\Rightarrow$ improved stabiliser decompositions, including 6-to-6 decomp (giving $\alpha \approx 0.431$ instead of $\alpha \approx 0.467$ ), and other decomps giving $\alpha<0.40$.

## Cat states

Qassim et al. uses cat states:

$$
\left|\operatorname{cat}_{n}\right\rangle:=\frac{1}{\sqrt{2}}\left(\mathbb{I}^{\otimes n}+Z^{\otimes n}\right)|T\rangle^{\otimes n}=\frac{1}{\sqrt{2}^{n+1}}\left(\left(\frac{\pi}{4}\right)-{ }^{\otimes n}+\left(\frac{\pi \pi}{4}-{ }^{\otimes n}\right)\right.
$$

## Cat states

Qassim et al. uses cat states:

$$
\left|\operatorname{cat}_{n}\right\rangle:=\frac{1}{\sqrt{2}}\left(\mathbb{I}^{\otimes n}+Z^{\otimes n}\right)|T\rangle^{\otimes n}=\frac{1}{\sqrt{2}^{n+1}}\left(\left(\frac{\pi}{4}\right)-{ }^{\otimes n}+\left(\frac{\boxed{\pi}}{4}\right) \otimes^{\otimes n}\right)
$$

These actually have nice representation in ZX:

$$
\left|\operatorname{cat}_{n}\right\rangle=\frac{1}{\sqrt{2}}\left\{\begin{array}{c}
\frac{\pi}{4}-\frac{\pi}{4}- \\
\vdots \\
\frac{\pi}{4}-
\end{array}\right.
$$

## Cat decompositions

They find good decomp of $\left|\mathrm{cat}_{6}\right\rangle$ :


## Cat decompositions

They find good decomp of $\left|\mathrm{cat}_{6}\right\rangle$ :


So, if we only have $\mid$ cat $\left._{6}\right\rangle$ diagrams, we would have $\alpha \approx 0.264$.

## Cat decompositions

They find good decomp of $\mid$ cat $\left._{6}\right\rangle$ :


So, if we only have $\mid$ cat $\left._{6}\right\rangle$ diagrams, we would have $\alpha \approx 0.264$. But we can do even better!


This would give $\alpha=0.25$.

## Cat decompositions

They find good decomp of $\left|\mathrm{cat}_{6}\right\rangle$ :


So, if we only have $\left|c^{\prime} t_{6}\right\rangle$ diagrams, we would have $\alpha \approx 0.264$. But we can do even better!


This would give $\alpha=0.25$.
Using these we get good decompositions for $\left|\operatorname{cat}_{k}\right\rangle$ with $k \leq 6$.

## Phase gadgets are cat states

We find cat states as phase gadgets:


So $n$-legged phase gadget is $\left|\operatorname{cat}_{n+1}\right\rangle$ state.

## Phase gadgets are cat states

We find cat states as phase gadgets:


So $n$-legged phase gadget is $\left|\operatorname{cat}_{n+1}\right\rangle$ state.
So as long as there are phase gadgets with $\leq 5$ legs, we can use these decompositions.

## Partial stabiliser decomp

But what if there are no phase gadgets?
Then we can do the following 'partial' decomp:


This trades 5 magic states for 3 terms with 1 magic per term.
So effectively removes 4 magic states.
This is then a 4-to- 3 decomp: $\alpha \approx 0.396$.

## Full strategy

We are hence looking for the following things to decompose:

1. a phase gadget with 3 legs $(\alpha=0.25)$,
2. a phase gadget with 5 legs ( $\alpha \approx 0.264$ ),
3. a phase gadget with 4 legs ( $\alpha \approx 0.317$ ),
4. a phase gadget with 2 legs $(\alpha=1 / 3 \approx 0.333)$,
5. any 5 T-spiders ( $\alpha \approx 0.396$ ).

So how well does all this work?

## Asymptotic benefit

- Worst case: no T-like phases killed during simplification.


## Asymptotic benefit

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.


## Asymptotic benefit

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.
- Size of diagrams are $O(k)$, so a rewrite costs $O\left(k^{2}\right)$.


## Asymptotic benefit

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.
- Size of diagrams are $O(k)$, so a rewrite costs $O\left(k^{2}\right)$.
- There are $O\left(2^{\alpha k}\right)$ diagrams, so total cost is $O\left(2^{\alpha k} k^{2}\right)$.


## Asymptotic benefit

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.
- Size of diagrams are $O(k)$, so a rewrite costs $O\left(k^{2}\right)$.
- There are $O\left(2^{\alpha k}\right)$ diagrams, so total cost is $O\left(2^{\alpha k} k^{2}\right)$.
- (Bravyi et al., 2016) gave $O\left(2^{\alpha k} k^{3}\right)$.
- Benefit comes from preventing 'double work': we 'partially evaluate' the stabilisers by simplifying the diagrams.


## Actual benefit

We benchmarked our method on two families of circuits:

- 50- and 100-qubit random Clifford+T circuits built out of Pauli exponentials.
- 50-qubit hidden-shift circuits (type of CCZ circuit).

We are sampling from the output distribution (using strong simulation).

Code is implemented in quizx, a Rust port of PyZX.

## Benchmark: Clifford+T

- 50 qubits $=100$ qubits


Percentage of random 50- and 100-qubit circuits of a given T-count that were successfully sampled in under 5 minutes. For each T-count 50 random circuits were generated.

## Benchmark: Clifford+T cat-decomp comparison



Runtime of random 20-qubit Clifford+T circuit simulations (avg of 10 runs per T-count).

## Benchmark: hidden-shift circuit term reduction

Reduction vs. naïve BSS
decomposition


Reduction vs. simplified BSS decomposition


Reduction in term count on 50 -qubit hidden shift circuits vs. naïve BSS decomposition (left) and BSS decomposition after single ZX-simplification (right).

## Benchmark: hidden-shift 50-qubit simulation time



The time distribution of simulating 100 random 50-qubit hidden-shift circuits with T-count 1400 using our new decompositions.

## Conclusions

- Using ZX we can greatly speed-up stabiliser rank simulations.
- Especially for structured circuits.
- It allows us to use better decompositions for substructures of diagrams, and to introduce partial stabiliser decompositions.


## Conclusions

- Using ZX we can greatly speed-up stabiliser rank simulations.
- Especially for structured circuits.
- It allows us to use better decompositions for substructures of diagrams, and to introduce partial stabiliser decompositions.
Moral of the story: optimisation and simulation are not separate. They are two sides of the same coin.


## Conclusions

- Using ZX we can greatly speed-up stabiliser rank simulations.
- Especially for structured circuits.
- It allows us to use better decompositions for substructures of diagrams, and to introduce partial stabiliser decompositions.
Moral of the story: optimisation and simulation are not separate.
They are two sides of the same coin.
Future work:
- Use more diagram optimisations.
- Find heuristics for picking good spiders to decompose.
- Approximate simulation and better weak simulation.
- stabiliser extent methods.
- Use quantum measurement $w / o$ computing marginals technique.


## Thank you for your attention!

Further reading:

- Kissinger \& vdW. Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions. arXiv: 2109.01076
- Kissinger, Vilmart \& vdW. Classical simulation of quantum circuits with partial and graphical stabiliser decompositions. arXiv: 2202.09202
- Qassim, Pashayan, Gosset. Improved upper bounds on the stabilizer rank of magic states. arXiv: 2106.07740
- Bravyi, Gosset. Improved classical simulation of quantum circuits dominated by Clifford gates. arXiv: 1601.07601

