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The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:

§ Quantum circuit optimisation and compilation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning
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Further Reading

For references and details see:
ZX-calculus for the working quantum computer scientist
https://arxiv.org/abs/2012.13966

For a book-length introduction see:
Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning
by Bob Coecke and Aleks Kissinger

https://arxiv.org/abs/2012.13966
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Quantum circuits bad!

Why is this so terrible?

§ Choice of gates is a bit arbitrary.

§ The notation is not “quantum native”.

§ Wires are rigid going from left-to-right.

The ZX-calculus essentially gets rid of these problems.
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ZX-diagrams

On a surface level, ZX-diagrams are alternative notation to circuits
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Now let’s formally introduce ZX-diagrams



Spiders

What gates are to circuits, spiders are to ZX-diagrams.
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Spiders cont.
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Formal composition

Spiders can be composed in two ways.

Horizontal composition gives tensor product:

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

b

ˆ

1 0
0 1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚



Formal composition

Spiders can be composed in two ways.
Horizontal composition gives tensor product:

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

b

ˆ

1 0
0 1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚



Formal composition

Other tensor product:
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Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions
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ZX-diagrams summary

§ Two types of generators: Z-spiders and X-spiders

§ Can compose both horizontally and vertically

§ Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.
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So far it’s just notation. What can we do with it?



Rules for ZX-diagrams: The ZX-calculus
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Bialgebra
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Rules for ZX-diagrams: The ZX-calculus
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Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:
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Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:
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Now let’s look at specific use-cases of ZX



Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Can we prove this using ZX?
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Cliffords in ZX

§ A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections x0|.

§ As a ZX-diagram, a Clifford map only has phases multiple of π
2 .

CNOT “ S “ π
2 = π

2
π
2

π
2H

§ Conversely, ZX-diagrams with phases multiple of π
2 are Clifford.
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Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:
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§ View all Hadamards as a type of edge:
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Graph states

A graph-like diagram is a graph state when

§ it has no inputs,

§ every spider is connected to a unique output,

§ all phases are zero.

Example:

G |Gy



Graph-theoretic rewriting
We’ve transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Local complementation

G

a b

dc

G‹a

a b

dc

pG‹aq‹b

a b

dc

G ‹ a :“ G , but with connectivity of neighbours of a complemented.

A pivot on edge uv is G ^ uv :“ G ‹ u ‹ v ‹ u.

G A

B C

vu

G^uv A

B C

v u
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Local complementation on graph states

An lcomp on graph state can be implemented using local Cliffords:

-π2
π
2

π
2

π
2

Npuq

u
“

... ...

Same goes for pivot:
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Removing vertices

Remove vertex by lcomp:

˘π
2

α1 αn

...... ...
“

...
α1¯

π
2

...
αn¯

π
2

α2

...

αń 1

...

α2¯
π
2

...
αń 1¯

π
2

...

...

Similarly, using pivot:

jπ
α1

“
αn

β1

βn

γ1

γn

kπ

...

...

...
αn ` kπ

βn ` pj ` k ` 1qπ
...

β1 ` pj ` k ` 1qπ

γ1 ` jπα1 ` kπ
......

γn ` jπ

...

...

...

...

...

...

...

... ...

...

...

...



Clifford simplification

§ With lcomp can remove all internal vertices with ˘π
2 phase.

§ With pivot can remove all internal vertices with 0 or π phase.

§ ...But Clifford ZX only has phases multiple of π
2 .

§ So Clifford diagram without in- and outputs just disappears!

§ Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.
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Clifford normal form

Other consequence: Clifford circuit reduced to

LC
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Simplifying general circuits

Example result after simplification:

π
2

7π
4

5π
4

π
4

3π
2

3π
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5π
4

Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

§ Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

§ Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.
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Non-Clifford optimisation

Additional rules for phase gadgets:

α

..
.

phase gadget

:: |x1, ..., xny ÞÑ e iαpx1‘...‘xnq |x1, ..., xny

jπ =α..
.

...

...

...

...

...

...

...

...

(-1)jα

α

β

α1

αn

..
.

α ` β α1

αn

..
.

...

... ...

...

=..
.

..
.

..
.

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus
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T-count optimisation

§ Phase gadget optimisation allows us to kill non-Clifford phases.

§ At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

§ Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

§ Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.
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Circuit equality verification

Can we verify correctness of optimisations?

§ Compose optimised circuit with adjoint of original circuit

§ Simplify

§ If reduced to identity: optimisation was correct

§ If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.



Circuit equality verification

Can we verify correctness of optimisations?

§ Compose optimised circuit with adjoint of original circuit

§ Simplify

§ If reduced to identity: optimisation was correct

§ If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.



Circuit equality verification

Can we verify correctness of optimisations?

§ Compose optimised circuit with adjoint of original circuit

§ Simplify

§ If reduced to identity: optimisation was correct

§ If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.



Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:

§ Treat ZX-diagram as tensor network and contract.

§ Use stabiliser decomposition of magic states to write as sum of
simpler diagrams.
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Source: Sergey Bravyi, Graeme Smith, and John A Smolin.

Trading classical and quantum computational resources (2016).
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Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.

2. Simplify using ZX-calculus rules.

3. Replace magic states by stabilizer decomposition.

4. Repeat.

5. ...

6. Profit!

Early results looks like this could give major benefit



Stuff I didn’t talk about

§ CNOT optimisation

§ Relationship to MBQC and lattice surgery

§ Circuit routing

§ Applications in tensor networks



Conclusion

§ ZX-calculus is a better representation of quantum circuits

§ It allows you to graphically do many things

Thank you for your attention

vdW 2020, arXiv:2012.13966.
ZX-calculus for the working quantum computer scientist
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