Quantum Compilation using the ZX-calculus

John van de Wetering
Radboud University Nijmegen
Oxford University

June 22, 2021

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation developed by Bob Coecke and Ross Duncan in 2007.

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation developed by Bob Coecke and Ross Duncan in 2007.

Used in:

- Quantum circuit optimisation and compilation
- Measurement-based quantum computation
- Surface codes and lattice surgery

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation developed by Bob Coecke and Ross Duncan in 2007.

Used in:

- Quantum circuit optimisation and compilation
- Measurement-based quantum computation
- Surface codes and lattice surgery

It is also a convenient tool for day-to-day quantum reasoning

Further Reading

For references and details see:
ZX-calculus for the working quantum computer scientist
https://arxiv.org/abs/2012.13966

For a book-length introduction see:
Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning
by Bob Coecke and Aleks Kissinger

Quantum circuits

Circuit identities

$\sqrt{\mathrm{H}} \sqrt{\mathrm{H}}=$
\square
$\sqrt{\mathrm{T}^{+}}-\sqrt{\mathrm{T}}=$
$-\sqrt{T}-\sqrt{T}=-\sqrt{S}$

Gate commutation

More circuit equalities

$$
\begin{aligned}
& \because=\text { 二 } \\
& \text { - } \\
& \text { - } \ddagger=\text { ! } \ddagger
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! } \sqrt{H}!=\overline{\sqrt{S}-(\mathbb{H} \cdot \sqrt{S}-\sqrt{S-T-S}} \cdot \omega^{-1}
\end{aligned}
$$

*Selinger 2015

And more circuit equalities

$$
\begin{aligned}
& - \text { 四 }- \text { 困 }-=- \text { 困 } \\
& \text {-四困- = - 困- } \\
& - \text { 四- } \\
& \text { ? 四- - 四! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \mathbb{⿴ 囗 ⿻}
\end{aligned}
$$

$$
\begin{aligned}
& - \text { 표 }
\end{aligned}
$$

$$
\begin{aligned}
& - \text { 因國 }- \text { - } \\
& - \text { 因國 }=- \text { - }
\end{aligned}
$$

F

 F

＊Selinger 2015

And even more circuit equalities

$$
\begin{aligned}
& R_{7}: \sqrt{T^{8}}=-\frac{\sqrt{U^{4}}}{-\sqrt{V^{4}}-}=\frac{-\sqrt{T^{4}}}{-\sqrt{T^{4}}} \\
& R_{10}: \omega^{8}=\quad R_{11}:-x-T-x-2-\sqrt{Y^{7}}-
\end{aligned}
$$

$$
\begin{aligned}
& R_{12}: \frac{1}{x} \frac{1}{x}=\sqrt{T}
\end{aligned}
$$

*Amy, Chen, \& Ross 2018

Quantum circuits bad!

Why is this so terrible?

- Choice of gates is a bit arbitrary.
- The notation is not "quantum native".
- Wires are rigid going from left-to-right.

Quantum circuits bad!

Why is this so terrible?

- Choice of gates is a bit arbitrary.
- The notation is not "quantum native".
- Wires are rigid going from left-to-right.

The ZX-calculus essentially gets rid of these problems.

ZX-diagrams

On a surface level, ZX-diagrams are alternative notation to circuits

Circuit identity in ZX

Circuit identity in ZX

dots of same colour commute through each other

Circuit identity in ZX

dots of same colour commute through each other

\leadsto

Circuit identity in ZX

dots of same colour commute through each other

\leadsto

More fundamental rule: dots of same colour fuse

States in ZX

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \quad|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

States in ZX

$$
\begin{gathered}
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \quad|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
|0\rangle-\quad=|0\rangle \\
=-\quad
\end{gathered}
$$

States in ZX

$$
\begin{gathered}
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \quad|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
|0\rangle-\quad=|0\rangle- \\
-\quad \\
|0\rangle-\quad \cdots \infty
\end{gathered}
$$

States in ZX

$$
\begin{gathered}
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \quad|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
|0\rangle-\quad=|0\rangle- \\
-\quad-\quad \mid
\end{gathered}
$$

single-wire dot copies through opposite-coloured dot

$$
=\underline{Q^{o-}}=\square^{0-}=\underline{0^{o-}}
$$

States in ZX

$$
\begin{gathered}
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \quad|-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
|0\rangle-\frac{0}{-\infty}=|0\rangle- \\
|0\rangle-
\end{gathered}
$$

single-wire dot copies through opposite-coloured dot

all rules hold with colours interchanged

Now let's formally introduce ZX-diagrams

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

$$
\begin{array}{cc}
\text { Z-spider } & \text { X-spider } \\
|0 \cdots 0\rangle\langle 0 \cdots 0| & |+\cdots+\rangle\langle+\cdots+| \\
+e^{i \alpha}|1 \cdots 1\rangle\langle 1 \cdots 1| & +e^{i \alpha}|-\cdots-\rangle\langle-\cdots-|
\end{array}
$$

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

$$
\begin{gathered}
\text { Z-spider } \\
|0 \cdots 0\rangle\langle 0 \cdots 0| \\
+e^{i \alpha}|1 \cdots 1\rangle\langle 1 \cdots 1| \\
\vdots \alpha
\end{gathered}
$$

X-spider
$|+\cdots+\rangle\langle+\cdots+|$
$+e^{i \alpha}|-\cdots-\rangle\langle-\cdots \cdot|$

For example:
$—$ —— $=|0\rangle\langle 0|+e^{i \alpha}|1\rangle\langle 1|=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}0 & 0 \\ 0 & e^{i \alpha}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \alpha}\end{array}\right)$
$-(\alpha)=|+\rangle\langle+|+e^{i \alpha}|-\rangle\langle-|=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)+\frac{1}{2} e^{i \alpha}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$

Spiders cont.

If $\alpha=0$ we drop the label:

Spiders cont.

If $\alpha=0$ we drop the label:

Example:

We ignore these non-zero scalar factors

Formal composition

Spiders can be composed in two ways.

Formal composition

Spiders can be composed in two ways. Horizontal composition gives tensor product:

$$
\begin{aligned}
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) \\
& \square=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Formal composition

Other tensor product:

$$
\begin{aligned}
\overline{0} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes \frac{1}{\sqrt{2}}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Formal composition

Horizontal composition is regular composition of linear maps:

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and horizontal compositions

Symmetries

Note:

Hence, we may write

Symmetries

Note:

Hence, we may write

In general: only connectivity matters

ZX-diagrams summary

- Two types of generators: Z-spiders and X-spiders
- Can compose both horizontally and vertically
- Wires can connect every which way

ZX-diagrams summary

- Two types of generators: Z-spiders and X-spiders
- Can compose both horizontally and vertically
- Wires can connect every which way

How powerful are ZX-diagrams as a representation?
Theorem
ZX-diagrams are universal: any linear map between qubits can be represented as a ZX-diagram.

So far it's just notation. What can we do with it?

Rules for ZX-diagrams: The ZX-calculus

$$
-\mathrm{O}=
$$

$$
-\square \square-\quad=\quad
$$

$\alpha, \beta \in[0,2 \pi]$

Spider fusion

Connected spiders of same colour fuse

Spider fusion

Connected spiders of same colour fuse

$$
-(\beta-\beta=-\alpha+\beta
$$

State and pi-copy

π 's and states copy through the other colour

State and pi-copy

π 's and states copy through the other colour
Combining rules:

Hadamards and colour-changing

Definition of Hadamard in ZX:

$$
\square-:=-\left(\frac{\pi}{2}\right)-\frac{\pi}{2}-\frac{\pi}{2}-
$$

Hadamards and colour-changing

Definition of Hadamard in ZX:

$$
\square-\square:=-\frac{\pi}{2}-\frac{\pi}{2}--\frac{\pi}{2}-
$$

Rules:

Hadamards and colour-changing

Definition of Hadamard in ZX:

$$
\square-\square:=-\frac{\pi}{2}-\frac{\pi}{2}-\left(\frac{\pi}{2}\right)-
$$

Rules:

Derived rule: commuting Hadamards changes colour

Hadamards and colour-changing

Definition of Hadamard in ZX:

$$
\square-\square:=-\frac{\pi}{2}-\frac{\pi}{2}-\frac{\pi}{2}-
$$

Rules:

Derived rule: commuting Hadamards changes colour

Consequence: Everything in ZX holds with colours reversed

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

Classically we have:

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

Classically we have:

Hence:

Three CNOTs make SWAP

Rules for ZX-diagrams: The ZX-calculus

$$
\cdots-\alpha=\underset{\vdots}{0-} \quad \alpha, \beta \in[0,2 \pi]
$$

- All derivations hold in any orientation
- All derivations hold with colours interchanged
- All derivations hold with phases negated

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is $|000\rangle+|111\rangle$. The following circuit creates a GHZ-state:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is $|000\rangle+|111\rangle$.
The following circuit creates a GHZ-state:

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is $|000\rangle+|111\rangle$.
The following circuit creates a GHZ-state:

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is $|000\rangle+|111\rangle$.
The following circuit creates a GHZ-state:

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is $|000\rangle+|111\rangle$.
The following circuit creates a GHZ-state:

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is $|000\rangle+|111\rangle$.
The following circuit creates a GHZ-state:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Example 2: Teleportation

Let $|\Psi\rangle$ represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Now let's look at specific use-cases of ZX

Use-case of ZX \#1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Use-case of ZX \#1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.
Can we prove this using ZX ?

Cliffords in ZX

- A Clifford map is any linear map produced from combining Clifford unitaries, states and post-selections $\langle 0|$.

Cliffords in ZX

- A Clifford map is any linear map produced from combining Clifford unitaries, states and post-selections $\langle 0|$.
- As a ZX-diagram, a Clifford map only has phases multiple of $\frac{\pi}{2}$.

$$
\mathrm{CNOT}=\underset{0}{0-\left(\frac{\pi}{2}\right.} \quad \mathrm{S}=-\left(\frac{\pi}{2}-\left(\frac{\pi}{2}\right)-\left(\frac{\pi}{2}\right)-\right.
$$

- Conversely, ZX-diagrams with phases multiple of $\frac{\pi}{2}$ are Clifford.

Graph-like diagrams

Every ZX-diagram can be reduced to a graph-like diagram:

- Only Z-spiders and Hadamards:

Graph-like diagrams

Every ZX-diagram can be reduced to a graph-like diagram:

- Only Z-spiders and Hadamards:

- Cancel adjacent hadamards: -마- =

Graph-like diagrams

Every ZX-diagram can be reduced to a graph-like diagram:

- Only Z-spiders and Hadamards:

- Cancel adjacent hadamards: - ㄴ- $=$
- Fuse all spiders.

Graph-like diagrams

Every ZX-diagram can be reduced to a graph-like diagram:

- Only Z-spiders and Hadamards:

- Cancel adjacent hadamards: - 따- $=$
- Fuse all spiders.
- No self-loops or multiple edges:

Graph-like diagrams

Every ZX-diagram can be reduced to a graph-like diagram:

- Only Z-spiders and Hadamards:

- Cancel adjacent hadamards: -
- Fuse all spiders.
- No self-loops or multiple edges:

- View all Hadamards as a type of edge:

Graph states

A graph-like diagram is a graph state when

- it has no inputs,
- every spider is connected to a unique output,
- all phases are zero.

Example:

Graph-theoretic rewriting

We've transformed ZX-diagrams into simple undirected graphs so we can view rewrites graph-theoretically.

Graph-theoretic rewriting

We've transformed ZX-diagrams into simple undirected graphs so we can view rewrites graph-theoretically.

Local complementation
G

$G \star a:=G$, but with connectivity of neighbours of a complemented.

Graph-theoretic rewriting

We've transformed ZX-diagrams into simple undirected graphs so we can view rewrites graph-theoretically.

Local complementation
G

$G \star a:=G$, but with connectivity of neighbours of a complemented.
A pivot on edge $u v$ is $G \wedge u v:=G \star u \star v \star u$.

G

$G \wedge u v$

Local complementation on graph states

An Icomp on graph state can be implemented using local Cliffords:

Local complementation on graph states

An Icomp on graph state can be implemented using local Cliffords:

Same goes for pivot:

Removing vertices

Remove vertex by Icomp:

Similarly, using pivot:

Clifford simplification

- With Icomp can remove all internal vertices with $\pm \frac{\pi}{2}$ phase.
- With pivot can remove all internal vertices with 0 or π phase.

Clifford simplification

- With Icomp can remove all internal vertices with $\pm \frac{\pi}{2}$ phase.
- With pivot can remove all internal vertices with 0 or π phase.
- ...But Clifford ZX only has phases multiple of $\frac{\pi}{2}$.

Clifford simplification

- With Icomp can remove all internal vertices with $\pm \frac{\pi}{2}$ phase.
- With pivot can remove all internal vertices with 0 or π phase.
- ...But Clifford ZX only has phases multiple of $\frac{\pi}{2}$.
- So Clifford diagram without in- and outputs just disappears!

Clifford simplification

- With Icomp can remove all internal vertices with $\pm \frac{\pi}{2}$ phase.
- With pivot can remove all internal vertices with 0 or π phase.
- ...But Clifford ZX only has phases multiple of $\frac{\pi}{2}$.
- So Clifford diagram without in- and outputs just disappears!
- Hence: efficient calculation of amplitudes.

Clifford simplification

- With Icomp can remove all internal vertices with $\pm \frac{\pi}{2}$ phase.
- With pivot can remove all internal vertices with 0 or π phase.
- ...But Clifford ZX only has phases multiple of $\frac{\pi}{2}$.
- So Clifford diagram without in- and outputs just disappears!
- Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford normal form

Other consequence: Clifford circuit reduced to

Clifford normal form

Other consequence: Clifford circuit reduced to

Normal form of layers:

$$
\mathrm{H}+\mathrm{S}+\mathrm{CZ}+\mathrm{CNOT}+\mathrm{H}+\mathrm{CZ}+\mathrm{S}+\mathrm{H}
$$

Simplifying general circuits

Example result after simplification:

Simplifying general circuits

Example result after simplification:

Problem: does not look a circuit.

Simplifying general circuits

Example result after simplification:

Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

- Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus.
- Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020). There and back again: A circuit extraction tale.

Non-Clifford optimisation

Non-Clifford optimisation

Additional rules for phase gadgets:

$$
:: \quad\left|x_{1}, \ldots, x_{n}\right\rangle \mapsto e^{i \alpha\left(x_{1} \oplus \ldots \oplus x_{n}\right)}\left|x_{1}, \ldots, x_{n}\right\rangle
$$

Non-Clifford optimisation

Additional rules for phase gadgets:

$$
\therefore \quad\left|x_{1}, \ldots, x_{n}\right\rangle \mapsto e^{i \alpha\left(x_{1} \oplus \ldots \oplus x_{n}\right)}\left|x_{1}, \ldots, x_{n}\right\rangle
$$

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus

T-count optimisation

- Phase gadget optimisation allows us to kill non-Clifford phases.

T-count optimisation

- Phase gadget optimisation allows us to kill non-Clifford phases.
- At time of publishing, our method improved upon previous best T-counts for $6 / 36$ benchmark circuits - in one case by 50%.

T-count optimisation

- Phase gadget optimisation allows us to kill non-Clifford phases.
- At time of publishing, our method improved upon previous best T-counts for $6 / 36$ benchmark circuits - in one case by 50%.
- Combining with TODD [Heyfron \& Campbell 2018] we improved T-counts for 20/36 circuits.

T-count optimisation

- Phase gadget optimisation allows us to kill non-Clifford phases.
- At time of publishing, our method improved upon previous best T-counts for $6 / 36$ benchmark circuits - in one case by 50%.
- Combining with TODD [Heyfron \& Campbell 2018] we improved T-counts for 20/36 circuits.
- Note: [Zhang \& Chen 2019] use a different method that achieves nearly identical T-counts.

Circuit equality verification

Can we verify correctness of optimisations?

Circuit equality verification

Can we verify correctness of optimisations?

- Compose optimised circuit with adjoint of original circuit
- Simplify
- If reduced to identity: optimisation was correct
- If not: inconclusive

Circuit equality verification

Can we verify correctness of optimisations?

- Compose optimised circuit with adjoint of original circuit
- Simplify
- If reduced to identity: optimisation was correct
- If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.

Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:

- Treat ZX-diagram as tensor network and contract.

Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:

- Treat ZX-diagram as tensor network and contract.
- Use stabiliser decomposition of magic states to write as sum of simpler diagrams.

FIG. 3. Graphs G^{\prime} and $G^{\prime \prime}$ used in the definition of stabilizer states ϕ^{\prime} and $\phi^{\prime \prime}$; see Eq. (11).

$$
\begin{align*}
\left|H^{\otimes 6}\right\rangle= & (-16+12 \sqrt{2})\left|B_{6,0}\right\rangle+(96-68 \sqrt{2})\left|B_{6,6}\right\rangle \\
& +(10-7 \sqrt{2})\left|E_{6}\right\rangle+(-14+10 \sqrt{2})\left|O_{6}\right\rangle \\
& +(7-5 \sqrt{2}) Z^{\otimes 6}\left|K_{6}\right\rangle+(10-7 \sqrt{2})\left|\phi^{\prime}\right\rangle \\
& +(10-7 \sqrt{2})\left|\phi^{\prime \prime}\right\rangle, \tag{11}
\end{align*}
$$

where

$$
\left|\phi^{\prime}\right\rangle=\prod_{(i, j) \in E^{\prime}} \Lambda(Z)_{i, j}\left|O_{6}\right\rangle \text { and }\left|\phi^{\prime \prime}\right\rangle=\prod_{(i, j) \in E^{\prime \prime}} \Lambda(Z)_{i, j}\left|O_{6}\right\rangle .
$$

Source: Sergey Bravyi, Graeme Smith, and John A Smolin. Trading classical and quantum computational resources (2016).

$$
\begin{aligned}
& e^{i \pi / 4} \underset{(1)}{\frac{\pi}{4}}\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\right. \\
& -\frac{1+\sqrt{2}}{4} 0+2 e^{i \pi / 4} \\
& -2 \sqrt{2} i
\end{aligned}
$$

Circuit simulation with ZX-calculus

1. Write circuit+state as $Z X$-diagram.
2. Simplify using $Z X$-calculus rules.
3. Replace magic states by stabilizer decomposition.
4. Repeat.
5. ...
6. Profit!

Early results looks like this could give major benefit

Stuff I didn't talk about

- CNOT optimisation
- Relationship to MBQC and lattice surgery
- Circuit routing
- Applications in tensor networks

Conclusion

- ZX-calculus is a better representation of quantum circuits
- It allows you to graphically do many things

Conclusion

- ZX-calculus is a better representation of quantum circuits
- It allows you to graphically do many things

Thank you for your attention

vdW 2020, arXiv:2012.13966.
ZX-calculus for the working quantum computer scientist

