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The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:
» Quantum circuit optimisation and compilation

» Measurement-based quantum computation
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Surface codes and lattice surgery
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It is also a convenient tool for day-to-day quantum reasoning



Further Reading

For references and details see:
ZX-calculus for the working quantum computer scientist
https://arxiv.org/abs/2012.13966

For a book-length introduction see:

Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning

by Bob Coecke and Aleks Kissinger


https://arxiv.org/abs/2012.13966

Quantum circuits
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And more circuit equalities
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And even more circuit equalities
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Quantum circuits bad!

Why is this so terrible?
» Choice of gates is a bit arbitrary.
» The notation is not “quantum native”.

> Wires are rigid going from left-to-right.



Quantum circuits bad!

Why is this so terrible?
» Choice of gates is a bit arbitrary.
» The notation is not “quantum native”.

> Wires are rigid going from left-to-right.

The ZX-calculus essentially gets rid of these problems.



ZX-diagrams

On a surface level, ZX-diagrams are alternative notation to circuits




Circuit identity in ZX
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Circuit identity in ZX

’7 = H becomes =

dots of same colour commute through each other

More fundamental rule: dots of same colour fuse
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States in ZX
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States in ZX
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States in ZX
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Now let's formally introduce ZX-diagrams



Spiders

What gates are to circuits, spiders are to ZX-diagrams.
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Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider
+eia|1...1><1...1, +eia‘ ..... NEERE |

ookrerval = (5 o)+ (o o) = (5 o)

et - 4 )3 (4 )

For example:
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Spiders cont.

If o = 0 we drop the label:

}{ = [0---0)(0---0] + |1

>< = | X
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Spiders cont.

If o = 0 we drop the label:

><§=mmwmm+u
X = |_|_..._|_><_|_...+|+‘_

Example:
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We ignore these non-zero scalar factors



Formal composition

Spiders can be composed in two ways.



Formal composition

Spiders can be composed in two ways.
Horizontal composition gives tensor product:
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Formal composition

Other tensor product:
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Formal composition

Horizontal composition is regular composition of linear maps:

1 000
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0 00O
0 00O
0 00O
0 00O
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Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions



Symmetries
Note:

Hence, we may write



Symmetries
Note:

Hence, we may write

D

In general: only connectivity matters




/X-diagrams summary

» Two types of generators: Z-spiders and X-spiders
» Can compose both horizontally and vertically

» Wires can connect every which way



/X-diagrams summary

» Two types of generators: Z-spiders and X-spiders
» Can compose both horizontally and vertically

» Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.



So far it's just notation. What can we do with it?



Rules for ZX-diagrams: The ZX-calculus
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Spider fusion

Connected spiders of same colour fuse



Spider fusion

Connected spiders of same colour fuse
-
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State and pi-copy

m's and states copy through the other colour
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State and pi-copy

m's and states copy through the other colour

Combining rules:

o -




Hadamards and colour-changing

Definition of Hadamard in ZX:
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Definition of Hadamard in ZX:

Rules:



Hadamards and colour-changing

Definition of Hadamard in ZX:

—— = DO
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Hadamards and colour-changing

Definition of Hadamard in ZX:

—— = DO

- X

Derived rule: commuting Hadamards changes colour

Rules:

Consequence: Everything in ZX holds with colours reversed



Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:
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Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

o— =
Classically we have:
- o — COPY XOR —
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Three CNOTs make SWAP
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Three CNOTs make SWAP



Rules for ZX-diagrams: The ZX-calculus

Oi
= % a, B € [0,27]
Oi

» All derivations hold in any orientation
> All derivations hold with colours interchanged

> All derivations hold with phases negated



Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:
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Recall that the GHZ-state is [000) + |111).
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Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:
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Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:
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Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Alice

Bob




Now let's look at specific use-cases of ZX



Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.



Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Can we prove this using ZX?



Cliffords in ZX

» A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections (0.



Cliffords in ZX

» A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections (0.

> As a ZX-diagram, a Clifford map only has phases multiple of 7.

CNOT = i S=—G— H=-0G60600G

> Conversely, ZX-diagrams with phases multiple of % are Clifford.
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Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

» Only Z-spiders and Hadamards: ){ :X:

» Cancel adjacent hadamards: o~ =

v

Fuse all spiders.

v

No self-loops or multiple edges:

CRERD . O

View all Hadamards as a type of edge:

v



Graph states

A graph-like diagram is a graph state when
> it has no inputs,
> every spider is connected to a unique output,
» all phases are zero.

Example:

G 1G)



Graph-theoretic rewriting
We've transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.
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Graph-theoretic rewriting

We've transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Local complementation

a b a b a b

G N Gxa | X (Gxa)*b X

c d C d c d

G * a:= G, but with connectivity of neighbours of a complemented.

A pivot on edge uvis G A uv :i= G * u* v *u.

¢ | 0@ oo | A
N T AN



Local complementation on graph states

An Icomp on graph state can be implemented using local Cliffords:




Local complementation on graph states

An Icomp on graph state can be implemented using local Cliffords:




Removing vertices

Remove vertex by Icomp:
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Clifford simplification

v

With Icomp can remove all internal vertices with +7 phase.
» With pivot can remove all internal vertices with 0 or 7 phase.
...But Clifford ZX only has phases multiple of 7.

v

v

So Clifford diagram without in- and outputs just disappears!

v

Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.



Clifford normal form

Other consequence: Clifford circuit reduced to



Clifford normal form

Other consequence: Clifford circuit reduced to

Normal form of layers:
H+5+CZ+CNOT+H+CZ+5+H



Simplifying general circuits

Example result after simplification:
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Simplifying general circuits

Example result after simplification:

Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

» Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

» Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.
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Non-Clifford optimisation

Additional rules for phase gadgets:

@} phase gadget
QJ

\\:\\\\\
S W ¢ W io(x1®...®x
o (X1, ovy X > @000 Bx0)

(1Y
vy D @
¥ ¥ e &1

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus
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T-count optimisation

» Phase gadget optimisation allows us to kill non-Clifford phases.

» At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

» Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

» Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.
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If not: inconclusive



Circuit equality verification

Can we verify correctness of optimisations?
» Compose optimised circuit with adjoint of original circuit
> Simplify

v

If reduced to identity: optimisation was correct
> If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.
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» Treat ZX-diagram as tensor network and contract.



Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:
» Treat ZX-diagram as tensor network and contract.

» Use stabiliser decomposition of magic states to write as sum of
simpler diagrams.



FIG. 3. Graphs G’ and G” used in the definition of stabilizer
states ¢’ and ¢"; see Eq. (11).

|[H®S) = (=16 + 121/2)|Bg ) + (96 — 68v/2)[Bg ¢)
+ (10 = 7V2)|Eg) + (=14 + 10v/2)|05)
+(7-5V2)Z%%|Kg) + (10 - TV2) ¢')

+ (10 = 7V2)|¢"). (11)
where
#)= T[] M2),,l06) and |¢7)= ] A(2),,106)-
(i.j)eE (i.j)EE"

Source: Sergey Bravyi, Graeme Smith, and John A Smolin.

Trading classical and quantum computational resources (2016).
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Circuit simulation with ZX-calculus

6.

AR A

Write circuit+state as ZX-diagram.
Simplify using ZX-calculus rules.
Replace magic states by stabilizer decomposition.

Repeat.

Profit!

Early results looks like this could give major benefit



Stuff | didn’t talk about

v

CNOT optimisation
Relationship to MBQC and lattice surgery

v

» Circuit routing

v

Applications in tensor networks
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Conclusion

» ZX-calculus is a better representation of quantum circuits

» It allows you to graphically do many things

Thank you for your attention

vdW 2020, arXiv:2012.13966.
ZX-calculus for the working quantum computer scientist



