
Quantum Compilation using the ZX-calculus

John van de Wetering
Radboud University Nijmegen

Oxford University

June 22, 2021

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:

§ Quantum circuit optimisation and compilation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:

§ Quantum circuit optimisation and compilation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:

§ Quantum circuit optimisation and compilation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning

Further Reading

For references and details see:
ZX-calculus for the working quantum computer scientist
https://arxiv.org/abs/2012.13966

For a book-length introduction see:
Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning
by Bob Coecke and Aleks Kissinger

https://arxiv.org/abs/2012.13966

Quantum circuits

S

X

T

`

`

T:

X

H H

Circuit identities

+ +
=

H H =

T T = S

T: T =

Gate commutation

=

++ + +

T
=

+

T

+

T
=

+ +T T+ +T

More circuit equalities

And more circuit equalities

And even more circuit equalities

Quantum circuits bad!

Why is this so terrible?

§ Choice of gates is a bit arbitrary.

§ The notation is not “quantum native”.

§ Wires are rigid going from left-to-right.

The ZX-calculus essentially gets rid of these problems.

Quantum circuits bad!

Why is this so terrible?

§ Choice of gates is a bit arbitrary.

§ The notation is not “quantum native”.

§ Wires are rigid going from left-to-right.

The ZX-calculus essentially gets rid of these problems.

ZX-diagrams

On a surface level, ZX-diagrams are alternative notation to circuits

S ù π
2 T ù π

4

X ù π

`
ù

T: ù ´π
4

H ù

S

X

T

`

`

T:

X

H H

ù
π

π
2

π
4

´π
4

π

Circuit identity in ZX

T

`
=

T

`
becomes

π
4

=
π
4

dots of same colour commute through each other

=

++ + +

ù =

More fundamental rule: dots of same colour fuse

π
4

=
π
4

Circuit identity in ZX

T

`
=

T

`
becomes

π
4

=
π
4

dots of same colour commute through each other

=

++ + +

ù =

More fundamental rule: dots of same colour fuse

π
4

=
π
4

Circuit identity in ZX

T

`
=

T

`
becomes

π
4

=
π
4

dots of same colour commute through each other

=

++ + +

ù =

More fundamental rule: dots of same colour fuse

π
4

=
π
4

Circuit identity in ZX

T

`
=

T

`
becomes

π
4

=
π
4

dots of same colour commute through each other

=

++ + +

ù =

More fundamental rule: dots of same colour fuse

π
4

=
π
4

States in ZX

|0y “

ˆ

1
0

˙

|1y “

ˆ

0
1

˙

|`y “
1
?

2

ˆ

1
1

˙

|´y “
1
?

2

ˆ

1
´1

˙

`
=

|0y |0y

|0y ù

single-wire dot copies through opposite-coloured dot

= = =

|`y ù

all rules hold with colours interchanged

= = =

States in ZX

|0y “

ˆ

1
0

˙

|1y “

ˆ

0
1

˙

|`y “
1
?

2

ˆ

1
1

˙

|´y “
1
?

2

ˆ

1
´1

˙

`
=

|0y |0y

|0y ù

single-wire dot copies through opposite-coloured dot

= = =

|`y ù

all rules hold with colours interchanged

= = =

States in ZX

|0y “

ˆ

1
0

˙

|1y “

ˆ

0
1

˙

|`y “
1
?

2

ˆ

1
1

˙

|´y “
1
?

2

ˆ

1
´1

˙

`
=

|0y |0y

|0y ù

single-wire dot copies through opposite-coloured dot

= = =

|`y ù

all rules hold with colours interchanged

= = =

States in ZX

|0y “

ˆ

1
0

˙

|1y “

ˆ

0
1

˙

|`y “
1
?

2

ˆ

1
1

˙

|´y “
1
?

2

ˆ

1
´1

˙

`
=

|0y |0y

|0y ù

single-wire dot copies through opposite-coloured dot

= = =

|`y ù

all rules hold with colours interchanged

= = =

States in ZX

|0y “

ˆ

1
0

˙

|1y “

ˆ

0
1

˙

|`y “
1
?

2

ˆ

1
1

˙

|´y “
1
?

2

ˆ

1
´1

˙

`
=

|0y |0y

|0y ù

single-wire dot copies through opposite-coloured dot

= = =

|`y ù

all rules hold with colours interchanged

= = =

Now let’s formally introduce ZX-diagrams

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|

`e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

For example:

α “ |0yx0|`e iα |1yx1| “

ˆ

1 0
0 0

˙

`

ˆ

0 0
0 e iα

˙

“

ˆ

1 0
0 e iα

˙

α “ |`yx`|`e iα |´yx´| “
1

2

ˆ

1 1
1 1

˙

`
1

2
e iα

ˆ

1 ´1
´1 1

˙

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|

`e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

For example:

α “ |0yx0|`e iα |1yx1| “

ˆ

1 0
0 0

˙

`

ˆ

0 0
0 e iα

˙

“

ˆ

1 0
0 e iα

˙

α “ |`yx`|`e iα |´yx´| “
1

2

ˆ

1 1
1 1

˙

`
1

2
e iα

ˆ

1 ´1
´1 1

˙

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+yx+ ¨ ¨ ¨+|

`e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

For example:

α “ |0yx0|`e iα |1yx1| “

ˆ

1 0
0 0

˙

`

ˆ

0 0
0 e iα

˙

“

ˆ

1 0
0 e iα

˙

α “ |`yx`|`e iα |´yx´| “
1

2

ˆ

1 1
1 1

˙

`
1

2
e iα

ˆ

1 ´1
´1 1

˙

Spiders cont.

If α “ 0 we drop the label:

..
.

..
. “ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| ` |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

..
.

..
. “ |` ¨ ¨ ¨ `yx` ¨ ¨ ¨ `| ` |´ ¨ ¨ ¨ ´yx´ ¨ ¨ ¨ ´|

Example:

“ |`y ` |´y “
?

2 |0y “ |0y ` |1y “
?

2 |`y

π “ |`y ´ |´y “
?

2 |1y π “ |0y ´ |1y “
?

2 |´y

We ignore these non-zero scalar factors

Spiders cont.

If α “ 0 we drop the label:

..
.

..
. “ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| ` |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

..
.

..
. “ |` ¨ ¨ ¨ `yx` ¨ ¨ ¨ `| ` |´ ¨ ¨ ¨ ´yx´ ¨ ¨ ¨ ´|

Example:

“ |`y ` |´y “
?

2 |0y “ |0y ` |1y “
?

2 |`y

π “ |`y ´ |´y “
?

2 |1y π “ |0y ´ |1y “
?

2 |´y

We ignore these non-zero scalar factors

Formal composition

Spiders can be composed in two ways.

Horizontal composition gives tensor product:

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

b

ˆ

1 0
0 1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Formal composition

Spiders can be composed in two ways.
Horizontal composition gives tensor product:

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

b

ˆ

1 0
0 1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Formal composition

Other tensor product:

“

ˆ

1 0
0 1

˙

b
1
?

2

ˆ

1 0 0 1
0 1 1 0

˙

“
1
?

2

¨

˚

˚

˝

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

˛

‹

‹

‚

Formal composition

Horizontal composition is regular composition of linear maps:

“

1
?

2

¨

˚

˚

˝

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
1
?

2

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions

Symmetries
Note:

=

Hence, we may write

In general: only connectivity matters

=

π

π
2

π
4

-π2π

π

π
2

π
4

-π2

π
=

π

π
2

π
4

-π2

π

Symmetries
Note:

=

Hence, we may write

In general: only connectivity matters

=

π

π
2

π
4

-π2π

π

π
2

π
4

-π2

π
=

π

π
2

π
4

-π2

π

ZX-diagrams summary

§ Two types of generators: Z-spiders and X-spiders

§ Can compose both horizontally and vertically

§ Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.

ZX-diagrams summary

§ Two types of generators: Z-spiders and X-spiders

§ Can compose both horizontally and vertically

§ Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.

So far it’s just notation. What can we do with it?

Rules for ZX-diagrams: The ZX-calculus

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

α

..
.“ α

..
.

“

“

“

α, β P r0, 2πs

Spider fusion

β

..
.

..
.

α
..

.

..
.

“..
.

..
.

..
.α`β

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

Connected spiders of same colour fuse

π
4 =

π
4

π
4=

=
π

=
π π

βα = α ` β

Spider fusion

β

..
.

..
.

α
..

.

..
.

“..
.

..
.

..
.α`β

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

Connected spiders of same colour fuse

π
4 =

π
4

π
4=

=
π

=
π π

βα = α ` β

State and pi-copy

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

π’s and states copy through the other colour

Combining rules:

α “

..
.π α

..
.π “ ´α

..
.

π

π

π

“

..
.

π

π

π

“

..
.

π

π

π

State and pi-copy

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

π’s and states copy through the other colour

Combining rules:

α “

..
.π α

..
.π “ ´α

..
.

π

π

π

“

..
.

π

π

π

“

..
.

π

π

π

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

“
..

.aπ

..
.

aπ

aπ

aπ

“
aπ

bπ

pa ‘ bqπ

Classically we have:

“COPYXOR

COPY

COPY XOR

XOR

Hence:

=

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

“
..

.aπ

..
.

aπ

aπ

aπ

“
aπ

bπ

pa ‘ bqπ

Classically we have:

“COPYXOR

COPY

COPY XOR

XOR

Hence:

=

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

“
..

.aπ

..
.

aπ

aπ

aπ

“
aπ

bπ

pa ‘ bqπ

Classically we have:

“COPYXOR

COPY

COPY XOR

XOR

Hence:

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Three CNOTs make SWAP

=

Rules for ZX-diagrams: The ZX-calculus

β

..
.

..
.

α
..

.

..
.

“..
.

..
.

..
.α`β

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

α

..
.“ α

..
.

“

“

“

α, β P r0, 2πs

§ All derivations hold in any orientation

§ All derivations hold with colours interchanged

§ All derivations hold with phases negated

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

2bπ

aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

2aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

Alice

Bob

Now let’s look at specific use-cases of ZX

Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Can we prove this using ZX?

Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Can we prove this using ZX?

Cliffords in ZX

§ A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections x0|.

§ As a ZX-diagram, a Clifford map only has phases multiple of π
2 .

CNOT “ S “ π
2 = π

2
π
2

π
2H

§ Conversely, ZX-diagrams with phases multiple of π
2 are Clifford.

Cliffords in ZX

§ A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections x0|.

§ As a ZX-diagram, a Clifford map only has phases multiple of π
2 .

CNOT “ S “ π
2 = π

2
π
2

π
2H

§ Conversely, ZX-diagrams with phases multiple of π
2 are Clifford.

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

§ Only Z-spiders and Hadamards: ..
.“..
.

..
.αα ..
.

§ Cancel adjacent hadamards: “

§ Fuse all spiders.

§ No self-loops or multiple edges:

α
... ...

α ` π= α β... ... = α... ...β

§ View all Hadamards as a type of edge:

:“

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

§ Only Z-spiders and Hadamards: ..
.“..
.

..
.αα ..
.

§ Cancel adjacent hadamards: “

§ Fuse all spiders.

§ No self-loops or multiple edges:

α
... ...

α ` π= α β... ... = α... ...β

§ View all Hadamards as a type of edge:

:“

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

§ Only Z-spiders and Hadamards: ..
.“..
.

..
.αα ..
.

§ Cancel adjacent hadamards: “

§ Fuse all spiders.

§ No self-loops or multiple edges:

α
... ...

α ` π= α β... ... = α... ...β

§ View all Hadamards as a type of edge:

:“

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

§ Only Z-spiders and Hadamards: ..
.“..
.

..
.αα ..
.

§ Cancel adjacent hadamards: “

§ Fuse all spiders.

§ No self-loops or multiple edges:

α
... ...

α ` π= α β... ... = α... ...β

§ View all Hadamards as a type of edge:

:“

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

§ Only Z-spiders and Hadamards: ..
.“..
.

..
.αα ..
.

§ Cancel adjacent hadamards: “

§ Fuse all spiders.

§ No self-loops or multiple edges:

α
... ...

α ` π= α β... ... = α... ...β

§ View all Hadamards as a type of edge:

:“

Graph states

A graph-like diagram is a graph state when

§ it has no inputs,

§ every spider is connected to a unique output,

§ all phases are zero.

Example:

G |Gy

Graph-theoretic rewriting
We’ve transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Local complementation

G

a b

dc

G‹a

a b

dc

pG‹aq‹b

a b

dc

G ‹ a :“ G , but with connectivity of neighbours of a complemented.

A pivot on edge uv is G ^ uv :“ G ‹ u ‹ v ‹ u.

G A

B C

vu

G^uv A

B C

v u

Graph-theoretic rewriting
We’ve transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Local complementation

G

a b

dc

G‹a

a b

dc

pG‹aq‹b

a b

dc

G ‹ a :“ G , but with connectivity of neighbours of a complemented.

A pivot on edge uv is G ^ uv :“ G ‹ u ‹ v ‹ u.

G A

B C

vu

G^uv A

B C

v u

Graph-theoretic rewriting
We’ve transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Local complementation

G

a b

dc

G‹a

a b

dc

pG‹aq‹b

a b

dc

G ‹ a :“ G , but with connectivity of neighbours of a complemented.

A pivot on edge uv is G ^ uv :“ G ‹ u ‹ v ‹ u.

G A

B C

vu

G^uv A

B C

v u

Local complementation on graph states

An lcomp on graph state can be implemented using local Cliffords:

-π2
π
2

π
2

π
2

Npuq

u
“

... ...

Same goes for pivot:

...
...

...

...

u v

“

...

u v
π π

... ...

...

Local complementation on graph states

An lcomp on graph state can be implemented using local Cliffords:

-π2
π
2

π
2

π
2

Npuq

u
“

... ...

Same goes for pivot:

...
...

...

...

u v

“

...

u v
π π

... ...

...

Removing vertices

Remove vertex by lcomp:

˘π
2

α1 αn

...... ...
“

...
α1¯

π
2

...
αn¯

π
2

α2

...

αń 1

...

α2¯
π
2

...
αń 1¯

π
2

...

...

Similarly, using pivot:

jπ
α1

“
αn

β1

βn

γ1

γn

kπ

...

...

...
αn ` kπ

βn ` pj ` k ` 1qπ
...

β1 ` pj ` k ` 1qπ

γ1 ` jπα1 ` kπ
......

γn ` jπ

...

...

...

...

...

...

...

... ...

...

...

...

Clifford simplification

§ With lcomp can remove all internal vertices with ˘π
2 phase.

§ With pivot can remove all internal vertices with 0 or π phase.

§ ...But Clifford ZX only has phases multiple of π
2 .

§ So Clifford diagram without in- and outputs just disappears!

§ Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford simplification

§ With lcomp can remove all internal vertices with ˘π
2 phase.

§ With pivot can remove all internal vertices with 0 or π phase.

§ ...But Clifford ZX only has phases multiple of π
2 .

§ So Clifford diagram without in- and outputs just disappears!

§ Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford simplification

§ With lcomp can remove all internal vertices with ˘π
2 phase.

§ With pivot can remove all internal vertices with 0 or π phase.

§ ...But Clifford ZX only has phases multiple of π
2 .

§ So Clifford diagram without in- and outputs just disappears!

§ Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford simplification

§ With lcomp can remove all internal vertices with ˘π
2 phase.

§ With pivot can remove all internal vertices with 0 or π phase.

§ ...But Clifford ZX only has phases multiple of π
2 .

§ So Clifford diagram without in- and outputs just disappears!

§ Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford simplification

§ With lcomp can remove all internal vertices with ˘π
2 phase.

§ With pivot can remove all internal vertices with 0 or π phase.

§ ...But Clifford ZX only has phases multiple of π
2 .

§ So Clifford diagram without in- and outputs just disappears!

§ Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford normal form

Other consequence: Clifford circuit reduced to

LC

LC

LC

...

LC

LC
...

LC

¨
¨
¨

“
LC

LC

...
LC

LC LC

...

LC

¨
¨
¨

P
Normal form of layers:

H+S+CZ+CNOT+H+CZ+S+H

Clifford normal form

Other consequence: Clifford circuit reduced to

LC

LC

LC

...

LC

LC
...

LC

¨
¨
¨

“
LC

LC

...
LC

LC LC

...

LC

¨
¨
¨

P
Normal form of layers:

H+S+CZ+CNOT+H+CZ+S+H

Simplifying general circuits

Example result after simplification:

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

§ Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

§ Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.

Simplifying general circuits

Example result after simplification:

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Problem: does not look a circuit.

Solution: all rewrites preserve gflow.

§ Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

§ Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.

Simplifying general circuits

Example result after simplification:

π
2

7π
4

5π
4

π
4

3π
2

3π
2

5π
4

Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

§ Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

§ Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.

Non-Clifford optimisation

Additional rules for phase gadgets:

α

..
.

phase gadget

:: |x1, ..., xny ÞÑ e iαpx1‘...‘xnq |x1, ..., xny

jπ =α..
.

...

...

...

...

...

...

...

...

(-1)jα

α

β

α1

αn

..
.

α ` β α1

αn

..
.

...

... ...

...

=..
.

..
.

..
.

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus

Non-Clifford optimisation

Additional rules for phase gadgets:

α

..
.

phase gadget

:: |x1, ..., xny ÞÑ e iαpx1‘...‘xnq |x1, ..., xny

jπ =α..
.

...

...

...

...

...

...

...

...

(-1)jα

α

β

α1

αn

..
.

α ` β α1

αn

..
.

...

... ...

...

=..
.

..
.

..
.

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus

Non-Clifford optimisation

Additional rules for phase gadgets:

α

..
.

phase gadget

:: |x1, ..., xny ÞÑ e iαpx1‘...‘xnq |x1, ..., xny

jπ =α..
.

...

...

...

...

...

...

...

...

(-1)jα

α

β

α1

αn

..
.

α ` β α1

αn

..
.

...

... ...

...

=..
.

..
.

..
.

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus

T-count optimisation

§ Phase gadget optimisation allows us to kill non-Clifford phases.

§ At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

§ Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

§ Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.

T-count optimisation

§ Phase gadget optimisation allows us to kill non-Clifford phases.

§ At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

§ Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

§ Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.

T-count optimisation

§ Phase gadget optimisation allows us to kill non-Clifford phases.

§ At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

§ Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

§ Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.

T-count optimisation

§ Phase gadget optimisation allows us to kill non-Clifford phases.

§ At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

§ Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

§ Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.

Circuit equality verification

Can we verify correctness of optimisations?

§ Compose optimised circuit with adjoint of original circuit

§ Simplify

§ If reduced to identity: optimisation was correct

§ If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.

Circuit equality verification

Can we verify correctness of optimisations?

§ Compose optimised circuit with adjoint of original circuit

§ Simplify

§ If reduced to identity: optimisation was correct

§ If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.

Circuit equality verification

Can we verify correctness of optimisations?

§ Compose optimised circuit with adjoint of original circuit

§ Simplify

§ If reduced to identity: optimisation was correct

§ If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.

Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:

§ Treat ZX-diagram as tensor network and contract.

§ Use stabiliser decomposition of magic states to write as sum of
simpler diagrams.

Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:

§ Treat ZX-diagram as tensor network and contract.

§ Use stabiliser decomposition of magic states to write as sum of
simpler diagrams.

Source: Sergey Bravyi, Graeme Smith, and John A Smolin.

Trading classical and quantum computational resources (2016).

e iπ{4 π
4

π
4

π
4

π
4

π
4

π
4

=

´1`
?
2

4
1´
?
2

4 π π π π π π
+

´2i

π

π
2

π
2

π
2

π
2

π
2

π
2´2

?
2i

π
2

π
2

π
2

π
2

π
2

π
2

`2e iπ{4
-π2

`8
?

2i
π

`8
?

2i
π

Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.

2. Simplify using ZX-calculus rules.

3. Replace magic states by stabilizer decomposition.

4. Repeat.

5. ...

6. Profit!

Early results looks like this could give major benefit

Stuff I didn’t talk about

§ CNOT optimisation

§ Relationship to MBQC and lattice surgery

§ Circuit routing

§ Applications in tensor networks

Conclusion

§ ZX-calculus is a better representation of quantum circuits

§ It allows you to graphically do many things

Thank you for your attention

vdW 2020, arXiv:2012.13966.
ZX-calculus for the working quantum computer scientist

Conclusion

§ ZX-calculus is a better representation of quantum circuits

§ It allows you to graphically do many things

Thank you for your attention

vdW 2020, arXiv:2012.13966.
ZX-calculus for the working quantum computer scientist

