Quantum Compilation using the ZX-calculus

John van de Wetering
Radboud University Nijmegen
Oxford University

June 22, 2021

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:
» Quantum circuit optimisation and compilation

» Measurement-based quantum computation

v

Surface codes and lattice surgery

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation
developed by Bob Coecke and Ross Duncan in 2007.

Used in:
» Quantum circuit optimisation and compilation

» Measurement-based quantum computation

v

Surface codes and lattice surgery

> e

It is also a convenient tool for day-to-day quantum reasoning

Further Reading

For references and details see:
ZX-calculus for the working quantum computer scientist
https://arxiv.org/abs/2012.13966

For a book-length introduction see:

Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning

by Bob Coecke and Aleks Kissinger

https://arxiv.org/abs/2012.13966

Quantum circuits

fan)

5] A
B

Circuit identities

a

N\

Gate commutation

O— O—
At _ —— Tk

More circuit equalities

o= - I

o ||| []]

El
[4]
[l
El

*Selinger 2015

And more circuit equalities

DL ERE S DTS

ﬁﬁﬁi%ﬁ%%ﬁ%m

EHD

7

2 T T

THEHEHE}

N
m

{SHA}
—EHE- =

—a-
—a-

[
(i

EHEHE

CHSHAHS

CHEHEHEHIHE

&1y
o
o

I
HHE

@-EHEHE- @

“ EHE
Ll!:.

e
1=

EHIHEHEHE

{3

ﬁ
E

=l (B
B8 |8 |8

=
.
{1}

2|

=]
CIR TS
[(&

i EIEd
= Hn Hn
(2] [2] |B |&&E]
5 El=]= T

Jrew
Siie
-
iia
i

*Selln_g 2015

st 2

2

GHEHEHE]

EHE

l'u

I
Tl
Talt
e
e
e
e
Talt
e
TwbF
Talt
Tebt
Talf

And even more circuit equalities

[+ [
B EEE

3 3
I I
G B
[B

*Amy, Chen, & Ross 2018

Ry
Rip: 0

Quantum circuits bad!

Why is this so terrible?
» Choice of gates is a bit arbitrary.
» The notation is not “quantum native”.

> Wires are rigid going from left-to-right.

Quantum circuits bad!

Why is this so terrible?
» Choice of gates is a bit arbitrary.
» The notation is not “quantum native”.

> Wires are rigid going from left-to-right.

The ZX-calculus essentially gets rid of these problems.

ZX-diagrams

On a surface level, ZX-diagrams are alternative notation to circuits

Circuit identity in ZX

v v

. = _] . becomes

Circuit identity in ZX

b b . O

. | = _] . becomes i) = 5@

dots of same colour commute through each other

Circuit identity in ZX

:7 = H becomes =

dots of same colour commute through each other

I

Circuit identity in ZX

’7 = H becomes =

dots of same colour commute through each other

More fundamental rule: dots of same colour fuse

I S

States in ZX

o-(5) w-(

0

States in ZX

o-(o) w-0) w-50) PGl

0) —e— _ [0)

e -

States in ZX

m=() w=() »=z(

_ 1o

)

(

)

States in ZX

0) = (é) L = (2) [+ = \% G) -y — é <_11

0) —+— _ [0
VN -

O— > o

single-wire dot copies through opposite-coloured dot

= el

States in ZX

o-(o) w-0) w-50) PGl

0) —+— _ [0
797 —

00— > o—
single-wire dot copies through opposite-coloured dot
o el Gl

= ="

= > o—

all rules hold with colours interchanged

:
)
s
?

Now let's formally introduce ZX-diagrams

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider
+eia|1...1><1...1, +eia‘ NEERE |

=

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider
+eia|1...1><1...1, +eia‘ NEERE |

ookrerval = (5 o)+ (o o) = (5 o)

et - 4)3 (4)

For example:

4@7
4@7

Spiders cont.

If o = 0 we drop the label:

}{ = [0---0)(0---0] + |1

>< = | X

C I

><. ..

Spiders cont.

If o = 0 we drop the label:

><§=mmwmm+u
X = |_|_..._|_><_|_...+|+‘_

Example:

o— = [+ =V2l) o—

C I
L -
0)+[1) =v2|+)

@ - - =vID @ - -IL =25

We ignore these non-zero scalar factors

Formal composition

Spiders can be composed in two ways.

Formal composition

Spiders can be composed in two ways.
Horizontal composition gives tensor product:

{:

oo o
= O O O

THE

|
o oo

= O O O

OO O OO oOoo

el elNolNolNolNoll Sl o]

O R O OOOoOOoOOo

_H O O O OO oo

Formal composition

Other tensor product:

|

10010000
01 100O0O0TO

00001001
000O0O0OT1T1O0

|

1
%

Formal composition

Horizontal composition is regular composition of linear maps:

1 000
0100
0 00O
0 00O
0 00O
0 00O

0 010

0 001

|

100100O0O0O0
01 10000O00O0

000010001
000O0O0OBT1T10

|

1
V2

Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and
horizontal compositions

Symmetries
Note:

Hence, we may write

Symmetries
Note:

Hence, we may write

D

In general: only connectivity matters

/X-diagrams summary

» Two types of generators: Z-spiders and X-spiders
» Can compose both horizontally and vertically

» Wires can connect every which way

/X-diagrams summary

» Two types of generators: Z-spiders and X-spiders
» Can compose both horizontally and vertically

» Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.

So far it's just notation. What can we do with it?

Rules for ZX-diagrams: The ZX-calculus

o, f € [0,2n]

Spider fusion

Connected spiders of same colour fuse

Spider fusion

Connected spiders of same colour fuse
-
O N O

o 1o

State and pi-copy

m's and states copy through the other colour

7.77

State and pi-copy

m's and states copy through the other colour

Combining rules:

o -

Hadamards and colour-changing

Definition of Hadamard in ZX:

—o— = DO

Hadamards and colour-changing

Definition of Hadamard in ZX:

Rules:

Hadamards and colour-changing

Definition of Hadamard in ZX:

—— = DO

- X

Derived rule: commuting Hadamards changes colour

Rules:

Hadamards and colour-changing

Definition of Hadamard in ZX:

—— = DO

- X

Derived rule: commuting Hadamards changes colour

Rules:

Consequence: Everything in ZX holds with colours reversed

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

© @
F; o— = @ebD)

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

o— =
Classically we have:
- o — COPY XOR —
_ |XORfcopy| = e
— COPY XOR —

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

o— =
Classically we have:
- o — COPY XOR —
_ |XORfcopy| = >
— COPY XOR —

Hence:

Three CNOTs make SWAP

bEnE

Three CNOTs make SWAP

&t

Three CNOTs make SWAP

N

Three CNOTs make SWAP

>dT

Three CNOTs make SWAP

>g

Three CNOTs make SWAP

Three CNOTs make SWAP

Three CNOTs make SWAP

>

Three CNOTs make SWAP

Rules for ZX-diagrams: The ZX-calculus

Oi
= % a, B € [0,27]
Oi

» All derivations hold in any orientation
> All derivations hold with colours interchanged

> All derivations hold with phases negated

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:

|0) ——
0)—{H]
|0) ————

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:

|0) —p—
0)—{H]
|0y ————

=ty

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:

|0) —p—
0)—{H]
|0y ————

oedg

Proof:

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:

|0) —p—
0)—{H]
|0y ————

Proof:

SRS

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:

|0) —p—
0)—{H]
|0y ————

Proof:

—C

Example 1: GHZ-preparation circuit

Recall that the GHZ-state is [000) + |111).
The following circuit creates a GHZ-state:

|0) —p—
0)—{H]
|0y ————

Proof:

&

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Alice

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Alice

Bob

Example 2: Teleportation

Let |W) represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

Proof:

Alice

Bob

Now let's look at specific use-cases of ZX

Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Use-case of ZX #1: Clifford computation

Gottesman-Knill theorem
A quantum circuit of Cliffords can be efficiently classically simulated.

Can we prove this using ZX?

Cliffords in ZX

» A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections (0.

Cliffords in ZX

» A Clifford map is any linear map produced from combining
Clifford unitaries, states and post-selections (0.

> As a ZX-diagram, a Clifford map only has phases multiple of 7.

CNOT = i S=—G— H=-0G60600G

> Conversely, ZX-diagrams with phases multiple of % are Clifford.

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

» Only Z-spiders and Hadamards:)r< = i (e

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

» Only Z-spiders and Hadamards:){ = i (a):

» Cancel adjacent hadamards: -o- = —

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

» Only Z-spiders and Hadamards:){ = i (a):

» Cancel adjacent hadamards: -o- = —

> Fuse all spiders.

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

» Only Z-spiders and Hadamards:){ :X:

» Cancel adjacent hadamards: o~ =
> Fuse all spiders.

> No self-loops or multiple edges:

CRERD . O

Graph-like diagrams
Every ZX-diagram can be reduced to a graph-like diagram:

» Only Z-spiders and Hadamards:){ :X:

» Cancel adjacent hadamards: o~ =

v

Fuse all spiders.

v

No self-loops or multiple edges:

CRERD . O

View all Hadamards as a type of edge:

v

Graph states

A graph-like diagram is a graph state when
> it has no inputs,
> every spider is connected to a unique output,
» all phases are zero.

Example:

G 1G)

Graph-theoretic rewriting
We've transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Graph-theoretic rewriting
We've transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.
Local complementation

a b a b a b

G N Gxa | X (Gxa)*b X

c d C d c d

G * a:= G, but with connectivity of neighbours of a complemented.

Graph-theoretic rewriting

We've transformed ZX-diagrams into simple undirected graphs
so we can view rewrites graph-theoretically.

Local complementation

a b a b a b

G N Gxa | X (Gxa)*b X

c d C d c d

G * a:= G, but with connectivity of neighbours of a complemented.

A pivot on edge uvis G A uv :i= G * u* v *u.

¢ | 0@ oo | A
N T AN

Local complementation on graph states

An Icomp on graph state can be implemented using local Cliffords:

Local complementation on graph states

An Icomp on graph state can be implemented using local Cliffords:

Removing vertices

Remove vertex by Icomp:

*—51 ‘;:(j +k l+/1)1r

Clifford simplification

» With Icomp can remove all internal vertices with =7 phase.

» With pivot can remove all internal vertices with 0 or 7 phase.

Clifford simplification

» With Icomp can remove all internal vertices with =7 phase.
» With pivot can remove all internal vertices with 0 or 7 phase.
> ...But Clifford ZX only has phases multiple of 7.

Clifford simplification

v

With Icomp can remove all internal vertices with +7 phase.
» With pivot can remove all internal vertices with 0 or 7 phase.
...But Clifford ZX only has phases multiple of 7.

v

v

So Clifford diagram without in- and outputs just disappears!

Clifford simplification

v

With Icomp can remove all internal vertices with +7 phase.
» With pivot can remove all internal vertices with 0 or 7 phase.
...But Clifford ZX only has phases multiple of 7.

v

v

So Clifford diagram without in- and outputs just disappears!

v

Hence: efficient calculation of amplitudes.

Clifford simplification

v

With Icomp can remove all internal vertices with +7 phase.
» With pivot can remove all internal vertices with 0 or 7 phase.
...But Clifford ZX only has phases multiple of 7.

v

v

So Clifford diagram without in- and outputs just disappears!

v

Hence: efficient calculation of amplitudes.

Gottesman-Knill theorem
A Clifford computation can be efficiently classically simulated.

Clifford normal form

Other consequence: Clifford circuit reduced to

Clifford normal form

Other consequence: Clifford circuit reduced to

Normal form of layers:
H+5+CZ+CNOT+H+CZ+5+H

Simplifying general circuits

Example result after simplification:

Simplifying general circuits

Example result after simplification:

—0

Problem: does not look a circuit.

Simplifying general circuits

Example result after simplification:

Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

» Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

» Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.

Non-Clifford optimisation

Non-Clifford optimisation

Additional rules for phase gadgets:

@} phase gadget
QL

ia(x1...Dxn

\\\ \\\
\\O : X1, .0y Xn) > €

\
u
S

) ’Xl,

, Xn)

Non-Clifford optimisation

Additional rules for phase gadgets:

@} phase gadget
QJ

\\:\\\\\
S W ¢ W io(x1®...®x
o (X1, ovy X > @000 Bx0)

(1Y
vy D @
¥ ¥ e &1

Kissinger, vdW 2019: Reducing T-count with the ZX-calculus

’Xl,...

, Xn)

T-count optimisation

» Phase gadget optimisation allows us to kill non-Clifford phases.

T-count optimisation

» Phase gadget optimisation allows us to kill non-Clifford phases.

» At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

T-count optimisation

» Phase gadget optimisation allows us to kill non-Clifford phases.

» At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

» Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

T-count optimisation

» Phase gadget optimisation allows us to kill non-Clifford phases.

» At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

» Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

» Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.

Circuit equality verification

Can we verify correctness of optimisations?

Circuit equality verification

Can we verify correctness of optimisations?
» Compose optimised circuit with adjoint of original circuit
> Simplify

v

If reduced to identity: optimisation was correct

v

If not: inconclusive

Circuit equality verification

Can we verify correctness of optimisations?
» Compose optimised circuit with adjoint of original circuit
> Simplify

v

If reduced to identity: optimisation was correct
> If not: inconclusive

Using this method found mistake in other peer-reviewed optimiser.

Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:

» Treat ZX-diagram as tensor network and contract.

Classical Quantum circuit optimisation

Two ways for ZX to classically simulate circuits:
» Treat ZX-diagram as tensor network and contract.

» Use stabiliser decomposition of magic states to write as sum of
simpler diagrams.

FIG. 3. Graphs G’ and G” used in the definition of stabilizer
states ¢’ and ¢"; see Eq. (11).

|[H®S) = (=16 + 121/2)|Bg) + (96 — 68v/2)[Bg ¢)
+ (10 = 7V2)|Eg) + (=14 + 10v/2)|05)
+(7-5V2)Z%%|Kg) + (10 - TV2) ¢')

+ (10 = 7V2)|¢"). (11)
where
#)= T[] M2),,l06) and |¢7)=] A(2),,106)-
(i.j)eE (i.j)EE"

Source: Sergey Bravyi, Graeme Smith, and John A Smolin.

Trading classical and quantum computational resources (2016).

| UL e L4

22 @GOG o GO
()

TN
Sseclnacl T e
e

Circuit simulation with ZX-calculus

6.

AR A

Write circuit+state as ZX-diagram.
Simplify using ZX-calculus rules.
Replace magic states by stabilizer decomposition.

Repeat.

Profit!

Early results looks like this could give major benefit

Stuff | didn’t talk about

v

CNOT optimisation
Relationship to MBQC and lattice surgery

v

» Circuit routing

v

Applications in tensor networks

Conclusion

» ZX-calculus is a better representation of quantum circuits

» It allows you to graphically do many things

Conclusion

» ZX-calculus is a better representation of quantum circuits

» It allows you to graphically do many things

Thank you for your attention

vdW 2020, arXiv:2012.13966.
ZX-calculus for the working quantum computer scientist

