Classical simulation of quantum circuits with partial and graphical stabiliser decompositions

Aleks Kissinger Renaud Vilmart John van de Wetering University of Oxford Inria Saclay Radboud University & Oxford

TQC – July 13th 2022

Quantum circuit simulation

The problem: (somewhat) efficiently simulating quantum circuits.

Quantum circuit simulation

The problem: (somewhat) **efficiently** simulating quantum circuits. Broadly, two ways to do this:

- Tensor-network based methods:
 - direct state simulation
 - principle component analysis
 - contraction order finding
 - edge cutting

Quantum circuit simulation

The problem: (somewhat) **efficiently** simulating quantum circuits. Broadly, two ways to do this:

- Tensor-network based methods:
 - direct state simulation
 - principle component analysis
 - contraction order finding
 - edge cutting
 - ▶ ...
- Stabiliser-decomposition based methods:
 - Stabiliser extent
 - ► Stabiliser rank ← **This talk**

Simulating using stabiliser rank

- Start with Clifford+T circuit.
- Write each T gate as magic state injection.
- Decompose T states into sum of stabilisers.
- Efficiently simulate resulting Clifford circuits.
- Add results together.
- We're done!

Simulating using stabiliser rank

- Start with Clifford+T circuit.
- Write each T gate as magic state injection.
- Decompose T states into sum of stabilisers.
- Efficiently simulate resulting Clifford circuits.
- Add results together.
- We're done!

What's the catch? Stabiliser rank of k T states scales exponentially with k. ... But it's not just 2^k terms. We can do better!

Stabiliser ranks of T magic states

 $\begin{array}{l} \operatorname{Recall} |T\rangle \propto |0\rangle + e^{i\pi/4} |1\rangle. \\ \operatorname{So} \chi(|T\rangle) = 2 \text{ and hence } \chi(|T\rangle^{\otimes k}) \leq 2^k. \end{array}$

Stabiliser ranks of T magic states

Recall
$$|T\rangle \propto |0\rangle + e^{i\pi/4}|1\rangle$$
.
So $\chi(|T\rangle) = 2$ and hence $\chi(|T\rangle^{\otimes k}) \le 2^k$.
But also $\chi(|T\rangle^{\otimes 2}) = 2$, so:
 $\chi(|T\rangle^{\otimes k}) = \chi((|T\rangle^{\otimes 2})^{\otimes k/2}) \le 2^{k/2} = 2^{0.5k}$.

Stabiliser ranks of T magic states

Recall
$$|T\rangle \propto |0\rangle + e^{i\pi/4}|1\rangle$$
.
So $\chi(|T\rangle) = 2$ and hence $\chi(|T\rangle^{\otimes k}) \le 2^k$.
But also $\chi(|T\rangle^{\otimes 2}) = 2$, so:
 $\chi(|T\rangle^{\otimes k}) = \chi((|T\rangle^{\otimes 2})^{\otimes k/2}) \le 2^{k/2} = 2^{0.5k}$

Turns out $\chi(|T\rangle^{\otimes 6}) \leq 7$ so $\chi(|T\rangle^{\otimes k}) \leq 2^{\alpha k}$ where $\alpha = \log_2(7)/6 \approx 0.467$. Found by Bravyi, Smith, Smolin (BSS) in 2016.

Even have $\chi(|T\rangle^{\otimes 6}) = 6$ (previous talk): $\alpha \approx 0.431$.

Do stabiliser rank decompositions, but with *ZX-diagrams* instead of circuits!

Benefit 1: optimise intermediate ZX-diagrams to reduce T-count. Benefit 2: Can use *fancier* stabiliser decompositions.

Spiders

What gates are to circuits, *spiders* are to ZX-diagrams.

Spiders

What gates are to circuits, *spiders* are to ZX-diagrams.

Z-spider
$$|0\cdots0\rangle\langle 0\cdots0|$$

 $+e^{i\alpha}|1\cdots1\rangle\langle 1\cdots1|$
 \vdots α \vdots

X-spider
$$|+\cdots+\rangle\!\!\langle+\cdots+|$$

 $+e^{i\alpha}|-\cdots-\rangle\!\!\langle-\cdots-|$
 \vdots

Spiders

What gates are to circuits, *spiders* are to ZX-diagrams.

Z-spider

$$|0\cdots 0\rangle\langle 0\cdots 0|$$

 $+e^{i\alpha}|1\cdots 1\rangle\langle 1\cdots 1|$
 $\vdots \qquad \vdots$

X-spider

$$|+\cdots+\rangle\!\!\langle+\cdots+|$$

 $+e^{i\alpha}|-\cdots-\rangle\!\!\langle-\cdots-|$
 \vdots

For example:

$$-\underline{\alpha} - = |0\rangle\langle 0| + e^{i\alpha} |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$
$$-\underline{\alpha} - = |+\rangle\langle + |+e^{i\alpha} |-\rangle\langle -| = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{1}{2} e^{i\alpha} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Spiders cont.

If $\alpha = 0$ we drop the label:

Spiders cont.

If $\alpha = 0$ we drop the label:

$$= |0\cdots 0\rangle\langle 0\cdots 0| + |1\cdots 1\rangle\langle 1\cdots 1|$$

$$= |+\cdots +\rangle\langle +\cdots + |+|-\cdots -\rangle\langle -\cdots - |$$

Example:

$$\begin{array}{cccc} \bullet & = & |+\rangle + |-\rangle & = \sqrt{2}|0\rangle & \bullet & = & |0\rangle + |1\rangle & = \sqrt{2}|+\rangle \\ \hline \boldsymbol{\pi} & = & |+\rangle - |-\rangle & = \sqrt{2}|1\rangle & \quad \boldsymbol{\pi} & = & |0\rangle - |1\rangle & = \sqrt{2}|-\rangle \end{array}$$

Formal composition

Spiders can be composed in two ways.

Formal composition

Spiders can be composed in two ways. Vertical composition gives tensor product:

Formal composition

Horizontal composition is regular composition of linear maps:

Building ZX-diagrams

Any ZX-diagram is built by simply iterating these vertical and horizontal compositions

Symmetries

Note:

Hence, we may write

Symmetries

Note:

Hence, we may write

In general: only connectivity matters

▶ Write Clifford+T circuit as ZX-diagram.

- ▶ Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.

- ► Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.

- ► Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.

- ► Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.
- Repeat decomposition+optimisation until diagrams have reached desired simplicity.

- ▶ Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.
- Repeat decomposition+optimisation until diagrams have reached desired simplicity.
- Simply evaluate all the diagrams to get your outcome!

- ► Write Clifford+T circuit as ZX-diagram.
- Simplify diagram with your favourite algorithm.
- Pick some spiders with T-like phase and decompose them.
- Simplify resulting sum of diagrams.
- Repeat decomposition+optimisation until diagrams have reached desired simplicity.
- Simply evaluate all the diagrams to get your outcome!

Let's go through these steps in more detail.

- Writing circuit as ZX-diagram
- Optimising ZX-diagram
- Decomposing magic states

Writing Clifford+T circuit as ZX-diagram

Writing Clifford+T circuit as ZX-diagram

Calculating single amplitude:

Marginal probabilities

To calculate marginal probability, use *doubling* technique:

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution. Strong sim: approx. calculate any marginal probability.

Strong simulation vs Weak simulation

Weak sim: approx. sample from the same output distribution. Strong sim: approx. calculate any marginal probability.

We are doing *exact* strong simulation here.

- ► Writing circuit as ZX-diagram √
- Optimising ZX-diagram
- Decomposing magic states

Simplifying ZX-diagrams

We use strategy from our previous paper *Reducing T-count with the ZX-calculus.*

Simplifying ZX-diagrams

We use strategy from our previous paper *Reducing T-count with the ZX-calculus.* This transforms every ZX-diagram into something like this:

Properties of reduced diagram

The important part:

Every spider carries a non-Clifford phase,

Properties of reduced diagram

The important part:

Every spider carries a non-Clifford phase,

• or is part of a *phase gadget*: α ---

Particularly: if original circuit had k T gates, resulting diagram has $\leq 2k$ spiders (regardless of #qubits or #gates).

- ► Writing circuit as ZX-diagram √
- ▶ Optimising ZX-diagram ✓
- Decomposing magic states

Decomposing T-like spiders

The 6-to-7 magic state decomposition in ZX is:

$$e^{i\pi/4} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} = +2e^{i\pi/4}$$

$$-\frac{1+\sqrt{2}}{4} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} \stackrel{|}{\underset{\overline{a}}{\overline{a}}} \stackrel{||}{\underset{\overline{a}}{\overline{a}}} \stackrel{||}{\underset{\overline{a}}} \stackrel{|}{\underset{\overline{a}}} \stackrel{|}{\underset{\overline{a}$$

Applying the decomposition

We pick some spiders to decompose and unfuse the phases:

And now we can apply the magic state decomposition.

Better decompositions

Improved upper bounds on the stabilizer rank of magic states

Hammam Qassim *^{†‡ §} Hakop Pashayan *^{¶ |} David Gosset *[¶] June 16, 2021

 \Rightarrow improved stabiliser decompositions, including 6-to-6 decomp (giving $\alpha \approx 0.431$ instead of $\alpha \approx 0.467$), and other decomps giving $\alpha < 0.40$.

Cat states

Qassim et al. uses cat states:

$$|\operatorname{cat}_n\rangle := \frac{1}{\sqrt{2}} (\mathbb{I}^{\otimes n} + Z^{\otimes n}) |T\rangle^{\otimes n} = \frac{1}{\sqrt{2}^{n+1}} \left(\overline{\mathbb{I}}_{4}^{\otimes n} - \overline{\mathbb{I}}_{4}^{\otimes n} + \overline{\mathbb{I}}_{4}^{\otimes n} - \overline{\mathbb{I}}_{4}^{\otimes n} \right)$$

Cat states

Qassim et al. uses cat states:

$$|\operatorname{cat}_n\rangle := \frac{1}{\sqrt{2}} (\mathbb{I}^{\otimes n} + Z^{\otimes n}) |T\rangle^{\otimes n} = \frac{1}{\sqrt{2}^{n+1}} \left((\frac{\pi}{4})^{-\otimes n} + (\frac{5\pi}{4})^{-\otimes n} \right)$$

These actually have nice representation in ZX:

$$|\operatorname{cat}_n\rangle = \frac{1}{\sqrt{2}} \phi^{\left(\begin{array}{c} \widehat{\mathfrak{s}} \\ \widehat{\mathfrak{s}} \end{array}\right)}$$

They find good decomp of $|cat_6\rangle$:

They find good decomp of $|cat_6\rangle$:

So, if we only have $|cat_6\rangle$ diagrams, we would have $\alpha \approx 0.264$.

They find good decomp of $|cat_6\rangle$:

So, if we only have $|cat_6\rangle$ diagrams, we would have $\alpha \approx 0.264$. But we can do even better!

This would give $\alpha = 0.25$.

They find good decomp of $|cat_6\rangle$:

So, if we only have $|cat_6\rangle$ diagrams, we would have $\alpha \approx 0.264$. But we can do even better!

This would give $\alpha = 0.25$. Using these we get good decompositions for $|cat_k\rangle$ with $k \le 6$.

Phase gadgets are cat states

We find cat states as phase gadgets:

So *n*-legged phase gadget is $|cat_{n+1}\rangle$ state.

Phase gadgets are cat states

We find cat states as phase gadgets:

So *n*-legged phase gadget is $|cat_{n+1}\rangle$ state.

So as long as there are phase gadgets with \leq 5 legs, we can use these decompositions.

Partial stabiliser decomp

But what if there are no phase gadgets?

Then we can do the following 'partial' decomp:

This trades 5 magic states for 3 terms with 1 magic per term. So effectively removes 4 magic states. This is then a 4-to-3 decomp: $\alpha \approx 0.396$. We are hence looking for the following things to decompose:

- 1. a phase gadget with 3 legs ($\alpha =$ 0.25),
- 2. a phase gadget with 5 legs ($\alpha \approx$ 0.264),
- 3. a phase gadget with 4 legs (lpha pprox 0.317),
- 4. a phase gadget with 2 legs ($\alpha = 1/3 \approx$ 0.333),
- 5. any 5 T-spiders ($\alpha \approx 0.396$).

So how well does all this work?

▶ Worst case: no T-like phases killed during simplification.

- ▶ Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.
- Size of diagrams are O(k), so a rewrite costs $O(k^2)$.

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.
- Size of diagrams are O(k), so a rewrite costs $O(k^2)$.
- There are $O(2^{\alpha k})$ diagrams, so total cost is $O(2^{\alpha k}k^2)$.

- Worst case: no T-like phases killed during simplification.
- Then every diagram only needs constant number of rewrites.
- Size of diagrams are O(k), so a rewrite costs $O(k^2)$.
- There are $O(2^{\alpha k})$ diagrams, so total cost is $O(2^{\alpha k}k^2)$.
- (Bravyi et al., 2016) gave $O(2^{\alpha k}k^3)$.
- Benefit comes from preventing 'double work': we 'partially evaluate' the stabilisers by simplifying the diagrams.

Actual benefit

We benchmarked our method on two families of circuits:

- 50- and 100-qubit random Clifford+T circuits built out of Pauli exponentials.
- 50-qubit hidden-shift circuits (type of CCZ circuit).

We are sampling from the output distribution (using strong simulation).

Code is implemented in quizx, a Rust port of PyZX.

Benchmark: Clifford+T

Percentage of random 50- and 100-qubit circuits of a given T-count that were successfully sampled in under 5 minutes. For each T-count 50 random circuits were generated.

Benchmark: Clifford+T cat-decomp comparison

Runtime of random 20-qubit Clifford+T circuit simulations (avg of 10 runs per T-count).

Benchmark: hidden-shift circuit term reduction

Reduction in term count on 50-qubit hidden shift circuits vs. naïve BSS decomposition (left) and BSS decomposition after single ZX-simplification (right).

Benchmark: hidden-shift 50-qubit simulation time

The time distribution of simulating 100 random 50-qubit hidden-shift circuits with T-count 1400 using our new decompositions.

Conclusions

- Using ZX we can greatly speed-up stabiliser rank simulations.
- Especially for structured circuits.
- It allows us to use better decompositions for substructures of diagrams, and to introduce partial stabiliser decompositions.

Conclusions

- Using ZX we can greatly speed-up stabiliser rank simulations.
- Especially for structured circuits.
- It allows us to use better decompositions for substructures of diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate. They are two sides of the same coin.

Conclusions

- Using ZX we can greatly speed-up stabiliser rank simulations.
- Especially for structured circuits.
- It allows us to use better decompositions for substructures of diagrams, and to introduce partial stabiliser decompositions.

Moral of the story: optimisation and simulation are not separate. They are two sides of the same coin.

Future work:

- Use more diagram optimisations and decompositions
- Find heuristics for picking good spiders to decompose.
- Approximate simulation and better weak simulation.
- Use quantum measurement w/o computing marginals technique.

Thank you for your attention!

Further reading:

- Kissinger & vdW. Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions. arXiv: 2109.01076
- Kissinger, Vilmart & vdW. Classical simulation of quantum circuits with partial and graphical stabiliser decompositions. arXiv: 2202.09202
- Qassim, Pashayan, Gosset. Improved upper bounds on the stabilizer rank of magic states. arXiv: 2106.07740
- Bravyi, Gosset. Improved classical simulation of quantum circuits dominated by Clifford gates. arXiv: 1601.07601