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Motivation

§ Quantum theory is the mathematical framework for
understanding microscopic reality.

§ It is famously weird.

§ Can we motivate or capture its weirdness using category
theory?

Can we derive quantum theory using category theory?
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Mathematical postulates of quantum mechanics

§ A physical system corresponds to complex Hilbert space H.

§ States of a system are unit vectors |ψy P H up to global phase.

§ Hilbert space of composite system is given by tensor product.

§ Physical observables are self-adjoint operators A on H.

§ When we observe A, state is updated to A |ψy.
§ Schrödinger equation: |ψptqy “ e´itH |ψy.
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So many questions...

§ Why Hilbert space?

§ Why a complex one?

§ Why are states unit vectors and why up to global phase?

§ Why are observables linear operators on the Hilbert space?

§ Why self-adjoint?

§ Why are probabilities given by the inner product?

§ Why is time-evolution given by a unitary map of the form e itH?

§ Why is a composite system described by a tensor product?
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Some have good answers

Given we know that states are unit vectors in a Hilbert space:

§ Gleason’s theorem tells us why measurement updating works
the way it does.

§ Stone’s theorem on one-parameter unitary groups gives
Schrödinger equation.

§ Principle of local tomography gives tensor product.



Core question: why complex Hilbert spaces?



In this talk

§ Categorical characterisation of Hilb by Heunen and Kornell.

§ Characterisation of completely-positive maps by Selinger &
Coecke.

§ Characterisation of CPM(fHilb) by Tull.

§ Characterisation of probabilities r0, 1s by Westerbaan,
Westerbaan, vdW.



Hilbert spaces

Definition
A complex vector space H is a Hilbert space when it has

§ an inner-product x¨, ¨y : HˆHÑ H,

§ it is complete in the norm ‖a‖ “
a

xa, ay.

Write Hilb for cat of Hilbert spaces and bounded linear maps.
Write fHilb for full subcat of finite-dimensional Hilbert spaces.

Note: as category fHilb – fVectC.
This is because we aren’t capturing the inner product.
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Dagger-categories

Definition
Cat C is :-category when it has functor : : C Ñ Cop satisfying
:pAq “ A and :2 “ id.

Concretely dagger of f : AÑ B is a f : : B Ñ A such that
pf :q: “ f and pf ˝ gq: “ g : ˝ f :.

Bounded maps A : HÑ K have unique adjoint A: : KÑ H
satisfying xAv ,wyK “ xv ,A

:wyH. Makes Hilb into :-category.

For v P H we have v : CÑ H, and then xv ,wyH “ v :pwq.
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Structure of Hilb

§ Tensor product of Hilbert spaces is closure of tensor v.space.
Gives :-symmetric monoidal structure: all iso’s f ´1 “ f :.

§ :-biproducts: Direct sum of Hilb spaces is Hilb space.

§ :-equalisers: Any two maps f , g : HÑ K have equaliser
e : E Ñ H which is :-mono: e: ˝ e “ idE .

§ So Hilb has all :-limits.

§ Any :-mono is also a :-kernel.

Kerpf q A B

C

kerpf q f

0

gD!h

Can we characterise Hilb uniquely by these properties?
No: because HilbˆHilb has the same structure.
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Simple monoidal unit

In Hilb the monoidal unit I :“ C is

§ simple: it has exactly two subobjects, i.e.
if f : HÑ I is mono, then H – 0 or H – I .

§ Monoidally separating: for f , g : HbKÑ L we have f “ g iff
f ˝ pv b wq “ g ˝ pv b wq for all v : I Ñ H and w : I Ñ K.

Lemma (Heunen, 2009)

The scalars CpI , I q in a :-category C satisfying all the previous
properties form an involutive field.

So is this enough?
No, because fHilbQ also satisfies these properties.
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A final axiom

The wide subcategory of :-mono’s of Hilb has directed colimits.
An increasing net of Hilb spaces tHiuiPI , Hi ãÑ Hj for i ď j , has a
‘union’ Hilbert space Hi ãÑ H.

Note: not true in fHilb as C ãÑ C2 ãÑ C3 ãÑ ¨ ¨ ¨ has colimit L2pNq.
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Characterisation of Hilb

Definition (Heunen & Kornell 2021)

A Hilbert category is a :-symmetric monoidal category with

§ :-biproducts,

§ :-equalisers,

§ all :-mono’s being :-kernels,

§ a simple monoidally separating unit,

§ and directed colimits of :-mono’s.

Theorem (Heunen & Kornell 2021)

Any Hilbert category is equivalent to either Hilb or HilbR.
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Proof sketch

§ Scalars are field, so monoidal separation makes it a category of
vector spaces.

§ Kernels give many projections (idempotents).

§ Projections form orthomodular lattice.

§ Directed colimits give infinite-dimensional spaces.

§ Solèr’s Theorem: If infinite-dim space is orthomodular,
then field is H,C or R.

§ H is not commutative, so scalars must be C or R.
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Open questions

§ How to characterise just HilbC and not also HilbR?

§ How to characterise fHilb?

§ Can you get rid of the requirement the unit be simple to get a
category of (pre)sheaves over Hilb?

§ How to characterise mixed quantum theory, which includes
measurement and noise?
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Mixed states

We will focus on fHilb now.

§ Write BpHq :“ tA : HÑ H bounded u.

§ Call A P BpHq positive when xAv , vy ě 0 for all v .

§ A density operator is a positive ρ P BpHq with trpρq “ 1.

§ For any |ψy P H, the map |ψyxψ| is a density matrix.
|ψyxψ| p|φyq “ xψ, φy |ψy.

§ We call |ψyxψ| a pure state, and density operators mixed states.

To work with mixed states in quantum theory, we use BpHq instead
of H directly.
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Completely-positive maps

What are the maps allowed in mixed quantum theory?
These need to send density operators to density operators.

Call Φ : BpHq Ñ BpKq
§ positive when ΦpAq ě 0 for all A ě 0.

§ trace-preserving when trpΦpAqq “ trpAq for all A.

For positive trace-preserving Φ we see Φpρq is density op if ρ is.
However, this doesn’t deal with tensors.

Definition
Call Φ : BpHq Ñ BpKq completely positive when
Φb idn : BpHb Cnq Ñ BpK b Cnq is positive for all n.

Write CPM for cat of fin.dim. Hilb spaces and completely pos maps.
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Embedding the pure into the mixed

§ Pure QT has maps A : HÑ K.

§ In mixed setting: Â : BpHq Ñ BpKq by ÂpC q “ ACA:.

§ This gives a functor fHilb Ñ CPM.

§ We call Â a pure map.

Stinespring dilation

Every completely-positive Φ : BpHq Ñ BpKq can be written as
Φ “ pidK b trLq ˝ Â for some A : HÑ K b L.

This is also called a purification of Φ.

“Church of the Higher Hilbert Space”
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Dagger-compact categories

Graphical notation for :-categories: f

A

B

f ::“

B

A

Definition
A :-category is :-compact when for all A there exists A˚ and a state

: I Ñ A˚ b A satisfying the snake equations:

“ “

where wire with arrow pointing up is idA, and the other is idA˚ .

f

AA

f :=

B B
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A
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Matrix theories

Definition
An involutive semi-ring S is a ‘ring without negation’, with an
anti-automorphism satisfying ps:q: “ s.
Let MatS be cat of matrices over S with standard composition and
Kronecker product as tensor.

MatS is :-compact with pM:qij “ M:

ji .
MatC – fHilb.
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Selinger’s CPM construction

Definition
For :-compact C define CPM(C) as cat with same objects, but with
morphisms

f

A

C

A

f

BB

for any f : AÑ B b C in C.

§ The doubling functor D : C Ñ CPMpCq maps f to f b f ˚.

§ CPM(C) has discard map
AAA :=

§ Morphisms of CPM(C) are generated by DpCq and discarding.
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Hilbert space CPM construction

In the case of Hilbert spaces:

§ We have CPM(fHilb) – CPM,

§ doubling functor gives the pure maps,

§ discarding is the trace,

§ doubling and trace generating the morphisms is Stinespring
dilation.

Q: Can we identify when a category is of the form CPM(C)?
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Environment structure

In :-cat with discarding, g is dilation of f when g

A

B
C

B

f

A

“

Definition (Coecke, 2008)

Let C be :-compact with discarding.
An environment structure is choice of subcat Cp, such that
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Tull’s reconstruction of quantum theory

We will now give the axioms from Tull’s paper
A categorical reconstruction of quantum theory.

These are categorified versions of the operational axioms of
Chiribella, D’Ariano & Perinotti’s
Informational derivation of quantum theory

Intuitively:

§ Every map has an essentially unique purification.

§ Kernels exist and are well-behaved.

§ Every pure state can be perfectly distinguished from at least
one other pure state.

§ We can conditionally prepare states.
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Pure maps and purification

Call a map f pure when f “ 0, or any dilation of f is trivial:
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Kernels and complements

For :-kernel k, its complement is kK :“ kerpk:q.

Axiom 2: The category has :-kernels which are causally
complemented:
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Pure exclusion

Call f : AÑ B causal when B ˝ f “ A.

Axiom 3: Every non-zero object A has a causal pure state.
If furthermore A fl I , then for all causal pure ψ : I Ñ A there is a
non-zero e such that

e

ψ
“ 0
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Conditioning

Call states |0y , |1y : I Ñ A orthonormal when

|0y: ˝ |0y “ idI “ |1y: ˝ |1y and |1y: ˝ |0y “ 0

Axiom 4: For every orthonormal |0y , |1y : I Ñ A and any
ρ, σ : I Ñ B there is f : AÑ B with
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Matrix theories revisited

When does CPMpMatSq satisfy these assumptions for an involutive
semi-ring S?

Definition
A phased ring is a ring

§ which is commutative,

§ with involution pa:q: “ a,

§ having no zero-divisors: a ¨ b “ 0 ùñ a “ 0 or b “ 0,

§ where positive Spos :“ ta ¨ a:u is closed under addition.

Prop: CPMpMatSq satisfies the assumptions iff S is phased ring.

Open question: What are the phased rings? Are they always a field?
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We say C is a Tull-category when it is :-compact, non-trivial,

§ has zero morphisms,

§ has essentially unique purifications,

§ has causally complemented :-kernels,

§ can perfectly distinguish non-trivial pure states,

§ and can conditionally prepare states.

Theorem (Tull,2019)

Let C be a Tull-category with scalars R “ CpI , I q.
Then there is an embedding CPMpMatSq ãÑ C
where S is a phased ring satisfying R – Spos.
If R is bounded, then CPMpMatSq – C

Corollary: If C is a Tull-category with CpI , I q “ Rě0,
then C – CPM or C – CPMR.



We say C is a Tull-category when it is :-compact, non-trivial,

§ has zero morphisms,

§ has essentially unique purifications,

§ has causally complemented :-kernels,

§ can perfectly distinguish non-trivial pure states,

§ and can conditionally prepare states.

Theorem (Tull,2019)

Let C be a Tull-category with scalars R “ CpI , I q.
Then there is an embedding CPMpMatSq ãÑ C
where S is a phased ring satisfying R – Spos.

If R is bounded, then CPMpMatSq – C

Corollary: If C is a Tull-category with CpI , I q “ Rě0,
then C – CPM or C – CPMR.



We say C is a Tull-category when it is :-compact, non-trivial,

§ has zero morphisms,

§ has essentially unique purifications,

§ has causally complemented :-kernels,

§ can perfectly distinguish non-trivial pure states,

§ and can conditionally prepare states.

Theorem (Tull,2019)

Let C be a Tull-category with scalars R “ CpI , I q.
Then there is an embedding CPMpMatSq ãÑ C
where S is a phased ring satisfying R – Spos.
If R is bounded, then CPMpMatSq – C

Corollary: If C is a Tull-category with CpI , I q “ Rě0,
then C – CPM or C – CPMR.



We say C is a Tull-category when it is :-compact, non-trivial,

§ has zero morphisms,

§ has essentially unique purifications,

§ has causally complemented :-kernels,

§ can perfectly distinguish non-trivial pure states,

§ and can conditionally prepare states.

Theorem (Tull,2019)

Let C be a Tull-category with scalars R “ CpI , I q.
Then there is an embedding CPMpMatSq ãÑ C
where S is a phased ring satisfying R – Spos.
If R is bounded, then CPMpMatSq – C

Corollary: If C is a Tull-category with CpI , I q “ Rě0,
then C – CPM or C – CPMR.



Deriving real numbers

§ So why real numbers?

§ Because probabilities are real numbers.

§ So why are probabilities real numbers?

§ Can we derive the structure of r0, 1s from abstract grounds?
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Structure of probabilities

§ (Partially-defined) addition for coarse-graining.

§ Minimal and maximal element for “certainty”.

§ Negation. These three things give you effect algebras

§ Multiplication for joint events. Gives you effect monoids.

§ Some kind of limiting behaviour. Gives you ω-effect monoids.

This turns out to be enough to construct real numbers.
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Addition and coarse-graining

Suppose we have a probability distribution PpX “ xi q for
xi P tx1, . . . xnu where the xi represent mutually disjoint events.

§ Then PpX “ xi q ` PpX “ xjq represents
the probability of X being xi or xj .

§ Maximal coarse-graining
ř

xi
Ppxi q “ 1 gives “certainty” 1.

§ The “empty” coarse-graining gives “falsity” 0.

§ Coarse-graining over all but one event gives negation:
ř

xi‰xj
Ppxi q “ 1´ PpX “ xjq.
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Effect algebras

Definition
An effect algebra pE ,>, 0, 1q has

§ partial commutative associative >,

§ with a > 0 “ a for all a,

§ and @a unique aK with a > aK “ 1,

§ such that a K 1 implies a “ 0.

Examples

§ r0, 1s with aK :“ 1´ a.

§ A Boolean algebra: addition defined when a^ b “ 0 and then
a > b “ a_ b. aK is regular negation.

§ CstarpC,Aq – r0, 1sA with aK :“ 1´ a.

§ More generally r0, 1sV for any ordered vector space V .
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Joint events

If we have probability distributions PpX “ xi q and QpY “ yjq then
to describe probability of P “ xi and Q “ yj we need Ppxi q ¨ Qpyjq.

Definition
An effect monoid pM,>, 0, 1, ¨q is an effect algebra with
associative distributive unital multiplication:

pa > bq ¨ c “ pa ¨ cq> pb ¨ cq c ¨ pa > bq “ pc ¨ aq> pc ¨ bq

Examples:

§ r0, 1s.

§ Any Boolean algebra: a > b :“ a_ b, a ¨ b :“ a^ b.

§ tf : X Ñ r0, 1s continuousu for a compact Hausdorff space X
(i.e. unit interval of commutative unital C˚-algebra).
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A categorical aside

Definition
Let P be a poset and a, b P P.

§ P is bounded when it has min 0 and max 1.
BPos morphisms preserves 0 and 1.

§ An orthocomplement has paKqK “ a and a^ aK “ 0.

§ a and b orthogonal when a ď bK.

§ P is orthomodular when a ď bK implies a “ bK ^ pa_ bq.
OMP morphism preserves orthogonality and _.

Kalmbach extension
Forgetful functor U : OMP Ñ BPos has left adjoint K .

Theorem (Jenča, 2015): BPosK – EA
Theorem (Jacobs & Mandemaker 2012): Effect monoids are
monoids in EA.
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Countable sums

When we have infinite set of events txiuiPI , we want to be able to
define union of countable events:

ř

jPJ Ppxjq.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Equivalent definition

EA is ωEA iff increasing sequences a1 ď a2 ď . . . have a supremum.

Examples:

§ r0, 1s.

§ ω-complete Boolean algebra.

§ C pX , r0, 1sq for X basically disconnected.
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Our definition of abstract probabilities

So we want to model probabilities by an ω effect monoid
pM, 0, 1,>,K, ¨q:

§ It has partial sum >.

§ It has negation K and min and max element 0 and 1.

§ It has multiplication ¨.

§ It has suprema of increasing sequences.

Note: We are not requiring countable distributivity or commutativity
of multiplication. This turns out to follow for free (non-trivially).



Characterising ω-effect-monoids

Theorem (Westerbaan, Westerbaan & vdW, 2020)

An ω-effect-monoid M embeds into M1 ‘M2 where

§ M1 is an ω-complete Boolean algebra

§ M2 “ tf : X Ñ r0, 1s cont.u for basically disconnected X .

Corollary

ω-effect-monoids are commutative.

Call M irreducible when M – M1 ‘M2 implies Mi “ t0u.

Corollary

The only irreducible ω-effect-monoids are t0u, t0, 1u and r0, 1s.
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So why are probabilities modelled by r0, 1s?
An answer: it is the only non-trivial irreducible ω-effect-monoid.



The result more category-theoretically

Theorem (vdW, 2021)

Category of ω-effect-monoids is monadic over category of bounded
posets.

Theorem (Westerbaan2 & vdW, 2020)

The only irreducible ω-effect-monoids are t0u, t0, 1u and r0, 1s.

So: r0, 1s is unique non-initial, non-final irreducible Eilenberg-Moore
algebra of particular monad over bounded posets.



The result more category-theoretically

Theorem (vdW, 2021)

Category of ω-effect-monoids is monadic over category of bounded
posets.

Theorem (Westerbaan2 & vdW, 2020)

The only irreducible ω-effect-monoids are t0u, t0, 1u and r0, 1s.

So: r0, 1s is unique non-initial, non-final irreducible Eilenberg-Moore
algebra of particular monad over bounded posets.



Another way to phrase it

Theorem
There is a monad T over BPos such that r0, 1s is the unique
irreducible non-initial, non-final T -algebra.

Furthermore, BPosT – ωEM and these algebras have

§ a partial order,

§ a (partially defined) countable addition,

§ a negation,

§ and a multiplication.

So we have captured what is special about r0, 1s categorically.
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Some things we can do with these results.

§ A new Stone duality.

§ (Characterise Generalised Probabilistic Theories).

§ (Characterise normal sequential effect algebras)

§ (Reconstruct quantum theory)



Directed-complete effect monoids

Definition
A subset S Ď P of a poset P is directed when @a, b P S , Dc P S
with a ď c and b ď c .
P is directed complete when every directed subset has supremum.

Theorem (Westerbaan2 & vdW, 2020)

A directed-complete effect monoid M is M – M1 ‘M2 where

§ M1 is complete Boolean algebra.

§ M2 :“ tf : X Ñ r0, 1s cont.u with X extremally disconnected.
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Stone duality

Let CBA be category of complete Boolean algebras.
Recall that a space is Stonean when it is extremally disconnected
compact Hausdorff.

Stone duality: CBA – Stoneop.

Definition
Let Stonesub be cat of Stonean spaces w/ designated clopen subset.
I.e. objects pX ,Aq where X is Stonean, and A Ď X is clopen.
f : pX ,Aq Ñ pY ,Bq is f : X Ñ Y continuous & f pAq Ď B.

Theorem
Let DCEM be cat of directed-complete effect monoids.
Then DCEM – Stoneopsub.
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Summary

§ Categorical characterisation of Hilb as nice :-category

§ Characterisation of categories of form CPM(C).

§ Operational characterisation of CPMS for S “ C or S “ R.

§ Categorical characterisation of r0, 1s.



Open questions

§ Characterise fHilb in similar way to Hilb.

§ What are the possible phased rings in Tull-categories?

§ Is there a clean categorical characterisation of CPM?

§ And what about infinite-dimensional C˚-algebras?



Thank you for your attention!
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