Categorical approaches to reconstructing quantum theory

John van de Wetering
john@vdwetering.name
http://vdwetering.name
Radboud University Nijmegen
University of Oxford

December 14th 2021, SYCO 8

Motivation

- Quantum theory is the mathematical framework for understanding microscopic reality.
- It is famously weird.
- Can we motivate or capture its weirdness using category theory?

Motivation

- Quantum theory is the mathematical framework for understanding microscopic reality.
- It is famously weird.
- Can we motivate or capture its weirdness using category theory?
Can we derive quantum theory using category theory?

Mathematical postulates of quantum mechanics

- A physical system corresponds to complex Hilbert space \mathcal{H}.
- States of a system are unit vectors $|\psi\rangle \in \mathcal{H}$ up to global phase.

Mathematical postulates of quantum mechanics

- A physical system corresponds to complex Hilbert space \mathcal{H}.
- States of a system are unit vectors $|\psi\rangle \in \mathcal{H}$ up to global phase.
- Hilbert space of composite system is given by tensor product.

Mathematical postulates of quantum mechanics

- A physical system corresponds to complex Hilbert space \mathcal{H}.
- States of a system are unit vectors $|\psi\rangle \in \mathcal{H}$ up to global phase.
- Hilbert space of composite system is given by tensor product.
- Physical observables are self-adjoint operators A on \mathcal{H}.
- When we observe A, state is updated to $A|\psi\rangle$.

Mathematical postulates of quantum mechanics

- A physical system corresponds to complex Hilbert space \mathcal{H}.
- States of a system are unit vectors $|\psi\rangle \in \mathcal{H}$ up to global phase.
- Hilbert space of composite system is given by tensor product.
- Physical observables are self-adjoint operators A on \mathcal{H}.
- When we observe A, state is updated to $A|\psi\rangle$.
- Schrödinger equation: $|\psi(t)\rangle=e^{-i t H}|\psi\rangle$.

So many questions...

- Why Hilbert space?
- Why a complex one?
- Why are states unit vectors and why up to global phase?

So many questions...

- Why Hilbert space?
- Why a complex one?
- Why are states unit vectors and why up to global phase?
- Why are observables linear operators on the Hilbert space?
- Why self-adjoint?
- Why are probabilities given by the inner product?

So many questions...

-Why Hilbert space?

- Why a complex one?
- Why are states unit vectors and why up to global phase?
-Why are observables linear operators on the Hilbert space?
- Why self-adjoint?
-Why are probabilities given by the inner product?
- Why is time-evolution given by a unitary map of the form $e^{i t H}$?

So many questions...

- Why Hilbert space?
- Why a complex one?
- Why are states unit vectors and why up to global phase?
- Why are observables linear operators on the Hilbert space?
- Why self-adjoint?
-Why are probabilities given by the inner product?
- Why is time-evolution given by a unitary map of the form $e^{i t H}$?
- Why is a composite system described by a tensor product?

Some have good answers

Given we know that states are unit vectors in a Hilbert space:

- Gleason's theorem tells us why measurement updating works the way it does.
- Stone's theorem on one-parameter unitary groups gives Schrödinger equation.
- Principle of local tomography gives tensor product.

Core question: why complex Hilbert spaces?

In this talk

- Categorical characterisation of Hilb by Heunen and Kornell.
- Characterisation of completely-positive maps by Selinger \& Coecke.
- Characterisation of CPM(fHilb) by Tull.
- Characterisation of probabilities [0, 1] by Westerbaan, Westerbaan, vdW.

Hilbert spaces

Definition

A complex vector space \mathcal{H} is a Hilbert space when it has

- an inner-product $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$,
- it is complete in the norm $\|a\|=\sqrt{\langle a, a\rangle}$.

Hilbert spaces

Definition

A complex vector space \mathcal{H} is a Hilbert space when it has

- an inner-product $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$,
- it is complete in the norm $\|a\|=\sqrt{\langle a, a\rangle}$.

Write Hilb for cat of Hilbert spaces and bounded linear maps.

Hilbert spaces

Definition

A complex vector space \mathcal{H} is a Hilbert space when it has

- an inner-product $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$,
- it is complete in the norm $\|a\|=\sqrt{\langle a, a\rangle}$.

Write Hilb for cat of Hilbert spaces and bounded linear maps.
Write fHilb for full subcat of finite-dimensional Hilbert spaces.

Hilbert spaces

Definition

A complex vector space \mathcal{H} is a Hilbert space when it has

- an inner-product $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$,
- it is complete in the norm $\|a\|=\sqrt{\langle a, a\rangle}$.

Write Hilb for cat of Hilbert spaces and bounded linear maps.
Write fHilb for full subcat of finite-dimensional Hilbert spaces.
Note: as category $\mathbf{f H i l b} \cong \mathbf{f V e c t}_{\mathbb{C}}$.
This is because we aren't capturing the inner product.

Dagger-categories

Definition

Cat \mathbf{C} is \dagger-category when it has functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}^{\text {op }}$ satisfying $\dagger(A)=A$ and $\dagger^{2}=\mathrm{id}$.
Concretely dagger of $f: A \rightarrow B$ is a $f^{\dagger}: B \rightarrow A$ such that $\left(f^{\dagger}\right)^{\dagger}=f$ and $(f \circ g)^{\dagger}=g^{\dagger} \circ f^{\dagger}$.

Dagger-categories

Definition

Cat \mathbf{C} is \dagger-category when it has functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}^{\text {op }}$ satisfying $\dagger(A)=A$ and $\dagger^{2}=$ id.
Concretely dagger of $f: A \rightarrow B$ is a $f^{\dagger}: B \rightarrow A$ such that $\left(f^{\dagger}\right)^{\dagger}=f$ and $(f \circ g)^{\dagger}=g^{\dagger} \circ f^{\dagger}$.

Bounded maps $A: \mathcal{H} \rightarrow \mathcal{K}$ have unique adjoint $A^{\dagger}: \mathcal{K} \rightarrow \mathcal{H}$ satisfying $\langle A v, w\rangle_{\mathcal{K}}=\left\langle v, A^{\dagger} w\right\rangle_{\mathcal{H}}$. Makes Hilb into \dagger-category.

Dagger-categories

Definition

Cat \mathbf{C} is \dagger-category when it has functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}^{\text {op }}$ satisfying $\dagger(A)=A$ and $\dagger^{2}=$ id.
Concretely dagger of $f: A \rightarrow B$ is a $f^{\dagger}: B \rightarrow A$ such that $\left(f^{\dagger}\right)^{\dagger}=f$ and $(f \circ g)^{\dagger}=g^{\dagger} \circ f^{\dagger}$.

Bounded maps $A: \mathcal{H} \rightarrow \mathcal{K}$ have unique adjoint $A^{\dagger}: \mathcal{K} \rightarrow \mathcal{H}$ satisfying $\langle A v, w\rangle_{\mathcal{K}}=\left\langle v, A^{\dagger} w\right\rangle_{\mathcal{H}}$. Makes Hilb into \dagger-category.

For $v \in \mathcal{H}$ we have $\bar{v}: \mathbb{C} \rightarrow \mathcal{H}$, and then $\langle v, w\rangle_{\mathcal{H}}=\bar{v}^{\dagger}(w)$.

Structure of Hilb

- Tensor product of Hilbert spaces is closure of tensor v.space. Gives \dagger-symmetric monoidal structure: all iso's $f^{-1}=f^{\dagger}$.

Structure of Hilb

- Tensor product of Hilbert spaces is closure of tensor v.space. Gives \dagger-symmetric monoidal structure: all iso's $f^{-1}=f^{\dagger}$.
- \dagger-biproducts: Direct sum of Hilb spaces is Hilb space.

Structure of Hilb

- Tensor product of Hilbert spaces is closure of tensor v.space. Gives \dagger-symmetric monoidal structure: all iso's $f^{-1}=f^{\dagger}$.
- \dagger-biproducts: Direct sum of Hilb spaces is Hilb space.
- \dagger-equalisers: Any two maps $f, g: \mathcal{H} \rightarrow \mathcal{K}$ have equaliser $e: \mathcal{E} \rightarrow \mathcal{H}$ which is \dagger-mono: $e^{\dagger} \circ e=\mathrm{id}_{\mathcal{E}}$.
- So Hilb has all \dagger-limits.

Structure of Hilb

- Tensor product of Hilbert spaces is closure of tensor v.space. Gives \dagger-symmetric monoidal structure: all iso's $f^{-1}=f^{\dagger}$.
- \dagger-biproducts: Direct sum of Hilb spaces is Hilb space.
- \dagger-equalisers: Any two maps $f, g: \mathcal{H} \rightarrow \mathcal{K}$ have equaliser $e: \mathcal{E} \rightarrow \mathcal{H}$ which is \dagger-mono: $e^{\dagger} \circ e=\mathrm{id}_{\mathcal{E}}$.
- So Hilb has all \dagger-limits.
- Any \dagger-mono is also a \dagger-kernel.

Structure of Hilb

- Tensor product of Hilbert spaces is closure of tensor v.space. Gives \dagger-symmetric monoidal structure: all iso's $f^{-1}=f^{\dagger}$.
- \dagger-biproducts: Direct sum of Hilb spaces is Hilb space.
- \dagger-equalisers: Any two maps $f, g: \mathcal{H} \rightarrow \mathcal{K}$ have equaliser $e: \mathcal{E} \rightarrow \mathcal{H}$ which is \dagger-mono: $e^{\dagger} \circ e=\mathrm{id}_{\mathcal{E}}$.
- So Hilb has all \dagger-limits.
- Any \dagger-mono is also a \dagger-kernel.

Can we characterise Hilb uniquely by these properties?

Structure of Hilb

- Tensor product of Hilbert spaces is closure of tensor v.space. Gives \dagger-symmetric monoidal structure: all iso's $f^{-1}=f^{\dagger}$.
- \dagger-biproducts: Direct sum of Hilb spaces is Hilb space.
- \dagger-equalisers: Any two maps $f, g: \mathcal{H} \rightarrow \mathcal{K}$ have equaliser $e: \mathcal{E} \rightarrow \mathcal{H}$ which is \dagger-mono: $e^{\dagger} \circ e=\mathrm{id}_{\mathcal{E}}$.
- So Hilb has all \dagger-limits.
- Any \dagger-mono is also a \dagger-kernel.

Can we characterise Hilb uniquely by these properties? No: because Hilb \times Hilb has the same structure.

Simple monoidal unit

In Hilb the monoidal unit $I:=\mathbb{C}$ is

- simple: it has exactly two subobjects, i.e. if $f: \mathcal{H} \rightarrow I$ is mono, then $\mathcal{H} \cong 0$ or $\mathcal{H} \cong I$.

Simple monoidal unit

In Hilb the monoidal unit $I:=\mathbb{C}$ is

- simple: it has exactly two subobjects, i.e. if $f: \mathcal{H} \rightarrow I$ is mono, then $\mathcal{H} \cong 0$ or $\mathcal{H} \cong I$.
- Monoidally separating: for $f, g: \mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{L}$ we have $f=g$ iff $f \circ(v \otimes w)=g \circ(v \otimes w)$ for all $v: I \rightarrow \mathcal{H}$ and $w: I \rightarrow \mathcal{K}$.

Simple monoidal unit

In Hilb the monoidal unit $I:=\mathbb{C}$ is

- simple: it has exactly two subobjects, i.e. if $f: \mathcal{H} \rightarrow I$ is mono, then $\mathcal{H} \cong 0$ or $\mathcal{H} \cong I$.
- Monoidally separating: for $f, g: \mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{L}$ we have $f=g$ iff $f \circ(v \otimes w)=g \circ(v \otimes w)$ for all $v: I \rightarrow \mathcal{H}$ and $w: I \rightarrow \mathcal{K}$.

Lemma (Heunen, 2009)
The scalars $\mathbf{C}(I, I)$ in a \dagger-category \mathbf{C} satisfying all the previous properties form an involutive field.

Simple monoidal unit

In Hilb the monoidal unit $I:=\mathbb{C}$ is

- simple: it has exactly two subobjects, i.e. if $f: \mathcal{H} \rightarrow I$ is mono, then $\mathcal{H} \cong 0$ or $\mathcal{H} \cong I$.
- Monoidally separating: for $f, g: \mathcal{H} \otimes \mathcal{K} \rightarrow \mathcal{L}$ we have $f=g$ iff $f \circ(v \otimes w)=g \circ(v \otimes w)$ for all $v: I \rightarrow \mathcal{H}$ and $w: I \rightarrow \mathcal{K}$.

Lemma (Heunen, 2009)
The scalars $\mathbf{C}(I, I)$ in a \dagger-category \mathbf{C} satisfying all the previous properties form an involutive field.

So is this enough?
No, because $\mathbf{f H i l b}_{\mathbb{Q}}$ also satisfies these properties.

A final axiom

The wide subcategory of \dagger-mono's of Hilb has directed colimits. An increasing net of Hilb spaces $\left\{\mathcal{H}_{i}\right\}_{i \in I}, \mathcal{H}_{i} \hookrightarrow \mathcal{H}_{j}$ for $i \leqslant j$, has a 'union' Hilbert space $\mathcal{H}_{i} \hookrightarrow \mathcal{H}$.

A final axiom

The wide subcategory of \dagger-mono's of Hilb has directed colimits. An increasing net of Hilb spaces $\left\{\mathcal{H}_{i}\right\}_{i \in I}, \mathcal{H}_{i} \hookrightarrow \mathcal{H}_{j}$ for $i \leqslant j$, has a 'union' Hilbert space $\mathcal{H}_{i} \hookrightarrow \mathcal{H}$.
Note: not true in fHilb as $\mathbb{C} \hookrightarrow \mathbb{C}^{2} \hookrightarrow \mathbb{C}^{3} \hookrightarrow \cdots$ has colimit $L^{2}(\mathbb{N})$.

Characterisation of Hilb

Definition (Heunen \& Kornell 2021)
A Hilbert category is a \dagger-symmetric monoidal category with

- \dagger-biproducts,
- \dagger-equalisers,
- all \dagger-mono's being \dagger-kernels,
- a simple monoidally separating unit,
- and directed colimits of \dagger-mono's.

Characterisation of Hilb

Definition (Heunen \& Kornell 2021)
A Hilbert category is a \dagger-symmetric monoidal category with

- \dagger-biproducts,
- \dagger-equalisers,
- all \dagger-mono's being \dagger-kernels,
- a simple monoidally separating unit,
- and directed colimits of \dagger-mono's.

Theorem (Heunen \& Kornell 2021)

Any Hilbert category is equivalent to either $\mathbf{H i l b}$ or $\mathrm{Hilb}_{\mathbb{R}}$.

Proof sketch

- Scalars are field, so monoidal separation makes it a category of vector spaces.

Proof sketch

- Scalars are field, so monoidal separation makes it a category of vector spaces.
- Kernels give many projections (idempotents).
- Projections form orthomodular lattice.

Proof sketch

- Scalars are field, so monoidal separation makes it a category of vector spaces.
- Kernels give many projections (idempotents).
- Projections form orthomodular lattice.
- Directed colimits give infinite-dimensional spaces.

Proof sketch

- Scalars are field, so monoidal separation makes it a category of vector spaces.
- Kernels give many projections (idempotents).
- Projections form orthomodular lattice.
- Directed colimits give infinite-dimensional spaces.
- Solèr's Theorem: If infinite-dim space is orthomodular, then field is \mathbb{H}, \mathbb{C} or \mathbb{R}.

Proof sketch

- Scalars are field, so monoidal separation makes it a category of vector spaces.
- Kernels give many projections (idempotents).
- Projections form orthomodular lattice.
- Directed colimits give infinite-dimensional spaces.
- Solèr's Theorem: If infinite-dim space is orthomodular, then field is \mathbb{H}, \mathbb{C} or \mathbb{R}.
- \mathbb{H} is not commutative, so scalars must be \mathbb{C} or \mathbb{R}.

Open questions

- How to characterise just $\mathbf{H i l b}_{\mathbb{C}}$ and not also Hilb $_{\mathbb{R}}$?
- How to characterise fHilb?
- Can you get rid of the requirement the unit be simple to get a category of (pre)sheaves over Hilb?

Open questions

- How to characterise just $\mathbf{H i l b}_{\mathbb{C}}$ and not also $\mathbf{H i l b}_{\mathbb{R}}$?
- How to characterise fHilb?
- Can you get rid of the requirement the unit be simple to get a category of (pre)sheaves over Hilb?
- How to characterise mixed quantum theory, which includes measurement and noise?

Mixed states

We will focus on fHilb now.

- Write $B(\mathcal{H}):=\{A: \mathcal{H} \rightarrow \mathcal{H}$ bounded $\}$.
- Call $A \in B(\mathcal{H})$ positive when $\langle A v, v\rangle \geqslant 0$ for all v.
- A density operator is a positive $\rho \in B(\mathcal{H})$ with $\operatorname{tr}(\rho)=1$.

Mixed states

We will focus on fHilb now.

- Write $B(\mathcal{H}):=\{A: \mathcal{H} \rightarrow \mathcal{H}$ bounded $\}$.
- Call $A \in B(\mathcal{H})$ positive when $\langle A v, v\rangle \geqslant 0$ for all v.
- A density operator is a positive $\rho \in B(\mathcal{H})$ with $\operatorname{tr}(\rho)=1$.
- For any $|\psi\rangle \in \mathcal{H}$, the map $|\psi\rangle\langle\psi|$ is a density matrix. $|\psi\rangle \psi \mid(|\phi\rangle)=\langle\psi, \phi\rangle|\psi\rangle$.
- We call $|\psi\rangle\langle\psi|$ a pure state, and density operators mixed states.

Mixed states

We will focus on fHilb now.

- Write $B(\mathcal{H}):=\{A: \mathcal{H} \rightarrow \mathcal{H}$ bounded $\}$.
- Call $A \in B(\mathcal{H})$ positive when $\langle A v, v\rangle \geqslant 0$ for all v.
- A density operator is a positive $\rho \in B(\mathcal{H})$ with $\operatorname{tr}(\rho)=1$.
- For any $|\psi\rangle \in \mathcal{H}$, the map $|\psi\rangle\langle\psi|$ is a density matrix. $|\psi\rangle\langle\psi|(|\phi\rangle)=\langle\psi, \phi\rangle|\psi\rangle$.
- We call $|\psi\rangle \psi \psi \mid$ a pure state, and density operators mixed states.

To work with mixed states in quantum theory, we use $B(\mathcal{H})$ instead of \mathcal{H} directly.

Completely-positive maps

What are the maps allowed in mixed quantum theory?
These need to send density operators to density operators.

Completely-positive maps

What are the maps allowed in mixed quantum theory?
These need to send density operators to density operators.
Call $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$

- positive when $\Phi(A) \geqslant 0$ for all $A \geqslant 0$.
- trace-preserving when $\operatorname{tr}(\Phi(A))=\operatorname{tr}(A)$ for all A.

Completely-positive maps

What are the maps allowed in mixed quantum theory?
These need to send density operators to density operators.
Call $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$

- positive when $\Phi(A) \geqslant 0$ for all $A \geqslant 0$.
- trace-preserving when $\operatorname{tr}(\Phi(A))=\operatorname{tr}(A)$ for all A.

For positive trace-preserving Φ we see $\Phi(\rho)$ is density op if ρ is. However, this doesn't deal with tensors.

Completely-positive maps

What are the maps allowed in mixed quantum theory?
These need to send density operators to density operators.
Call $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$

- positive when $\Phi(A) \geqslant 0$ for all $A \geqslant 0$.
- trace-preserving when $\operatorname{tr}(\Phi(A))=\operatorname{tr}(A)$ for all A.

For positive trace-preserving Φ we see $\Phi(\rho)$ is density op if ρ is. However, this doesn't deal with tensors.

Definition
Call $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ completely positive when $\Phi \otimes \mathrm{id}_{n}: B\left(\mathcal{H} \otimes \mathbb{C}^{n}\right) \rightarrow B\left(\mathcal{K} \otimes \mathbb{C}^{n}\right)$ is positive for all n.
Write CPM for cat of fin.dim. Hilb spaces and completely pos maps.

Embedding the pure into the mixed

- Pure QT has maps $A: \mathcal{H} \rightarrow \mathcal{K}$.
- In mixed setting: $\hat{A}: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ by $\hat{A}(C)=A C A^{\dagger}$.
- This gives a functor $\mathbf{f H i l b} \rightarrow \mathbf{C P M}$.
- We call \hat{A} a pure map.

Embedding the pure into the mixed

- Pure QT has maps $A: \mathcal{H} \rightarrow \mathcal{K}$.
- In mixed setting: $\hat{A}: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ by $\hat{A}(C)=A C A^{\dagger}$.
- This gives a functor $\mathbf{f H i l b} \rightarrow \mathbf{C P M}$.
- We call \hat{A} a pure map.

Stinespring dilation

Every completely-positive $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ can be written as $\Phi=\left(\mathrm{id}_{\mathcal{K}} \otimes \operatorname{tr}_{\mathcal{L}}\right) \circ \hat{A}$ for some $A: \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{L}$.

Embedding the pure into the mixed

- Pure QT has maps $A: \mathcal{H} \rightarrow \mathcal{K}$.
- In mixed setting: $\hat{A}: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ by $\hat{A}(C)=A C A^{\dagger}$.
- This gives a functor $\mathbf{f H i l b} \rightarrow \mathbf{C P M}$.
- We call \hat{A} a pure map.

Stinespring dilation

Every completely-positive $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ can be written as $\Phi=\left(\mathrm{id}_{\mathcal{K}} \otimes \operatorname{tr}_{\mathcal{L}}\right) \circ \hat{A}$ for some $A: \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{L}$.
This is also called a purification of Φ.

Embedding the pure into the mixed

- Pure QT has maps $A: \mathcal{H} \rightarrow \mathcal{K}$.
- In mixed setting: $\hat{A}: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ by $\hat{A}(C)=A C A^{\dagger}$.
- This gives a functor $\mathbf{f H i l b} \rightarrow \mathbf{C P M}$.
- We call \hat{A} a pure map.

Stinespring dilation

Every completely-positive $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ can be written as $\Phi=\left(\mathrm{id}_{\mathcal{K}} \otimes \operatorname{tr}_{\mathcal{L}}\right) \circ \hat{A}$ for some $A: \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{L}$.
This is also called a purification of Φ.
"Church of the Higher Hilbert Space"

Dagger-compact categories

Dagger-compact categories

Definition

A \dagger-category is \dagger-compact when for all A there exists A^{*} and a state $\psi: I \rightarrow A^{*} \otimes A$ satisfying the snake equations:

$$
\varrho=t \quad U=t
$$

where wire with arrow pointing up is id_{A}, and the other is $\mathrm{id}_{A^{*}}$.

Dagger-compact categories

Graphical notation for \dagger-categories: \begin{tabular}{c}

A
\mid

\hline

$:$

A

\hline
\end{tabular}

Definition

A \dagger-category is \dagger-compact when for all A there exists A^{*} and a state $\Psi: I \rightarrow A^{*} \otimes A$ satisfying the snake equations:

$$
\varrho=\uparrow \quad \bigcup=\downarrow
$$

where wire with arrow pointing up is id_{A}, and the other is $\mathrm{id}_{A^{*}}$.

Matrix theories

Definition

An involutive semi-ring S is a 'ring without negation', with an anti-automorphism satisfying $\left(s^{\dagger}\right)^{\dagger}=s$.
Let Mat ${ }_{S}$ be cat of matrices over S with standard composition and Kronecker product as tensor.

Matrix theories

Definition

An involutive semi-ring S is a 'ring without negation', with an anti-automorphism satisfying $\left(s^{\dagger}\right)^{\dagger}=s$.
Let Mat ${ }_{S}$ be cat of matrices over S with standard composition and Kronecker product as tensor.
Mat ${ }_{S}$ is \dagger-compact with $\left(M^{\dagger}\right)_{i j}=M_{j i}^{\dagger}$.
Mat $_{\mathbb{C}} \cong \mathbf{f H i l b}$.

Selinger's CPM construction

Definition

For \dagger-compact \mathbf{C} define $\operatorname{CPM}(\mathbf{C})$ as cat with same objects, but with morphisms

for any $f: A \rightarrow B \otimes C$ in \mathbf{C}.

Selinger's CPM construction

Definition

For \dagger-compact \mathbf{C} define $\operatorname{CPM}(\mathbf{C})$ as cat with same objects, but with morphisms

for any $f: A \rightarrow B \otimes C$ in \mathbf{C}.

- The doubling functor $D: \mathbf{C} \rightarrow \operatorname{CPM}(\mathbf{C})$ maps f to $f \otimes f^{*}$.
- $\mathrm{CPM}(\mathbf{C})$ has discard map $\overline{\overline{\bar{T}}_{A}}:=\bigcap_{A} \hat{\wedge}_{A}$
- Morphisms of $\operatorname{CPM}(\mathbf{C})$ are generated by $D(\mathbf{C})$ and discarding.

Hilbert space CPM construction

In the case of Hilbert spaces:

- We have CPM(fHilb) $\cong \mathbf{C P M}$,
- doubling functor gives the pure maps,
- discarding is the trace,
- doubling and trace generating the morphisms is Stinespring dilation.

Hilbert space CPM construction

In the case of Hilbert spaces:

- We have CPM(fHilb) $\cong \mathbf{C P M}$,
- doubling functor gives the pure maps,
- discarding is the trace,
- doubling and trace generating the morphisms is Stinespring dilation.

Q: Can we identify when a category is of the form $\operatorname{CPM}(\mathbf{C})$?

Environment structure

Environment structure

In \dagger-cat with discarding, g is dilation of f when

Definition (Coecke, 2008)
Let \mathbf{C} be \dagger-compact with discarding.
An environment structure is choice of subcat \mathbf{C}_{p}, such that

- Every f in \mathbf{C} has dilation in \mathbf{C}_{p}.

Environment structure

In \dagger-cat with discarding, g is dilation of f when

Definition (Coecke, 2008)
Let \mathbf{C} be \dagger-compact with discarding.
An environment structure is choice of subcat \mathbf{C}_{p}, such that

- Every f in \mathbf{C} has dilation in \mathbf{C}_{p}.

Theorem: $\operatorname{CPM}\left(\mathbf{C}_{p}\right) \cong \mathbf{C}$.

Tull's reconstruction of quantum theory

We will now give the axioms from Tull's paper
A categorical reconstruction of quantum theory.

Tull's reconstruction of quantum theory

We will now give the axioms from Tull's paper A categorical reconstruction of quantum theory.

These are categorified versions of the operational axioms of Chiribella, D'Ariano \& Perinotti's Informational derivation of quantum theory

Tull's reconstruction of quantum theory

We will now give the axioms from Tull's paper A categorical reconstruction of quantum theory.

These are categorified versions of the operational axioms of Chiribella, D'Ariano \& Perinotti's Informational derivation of quantum theory

Intuitively:

- Every map has an essentially unique purification.
- Kernels exist and are well-behaved.
- Every pure state can be perfectly distinguished from at least one other pure state.
- We can conditionally prepare states.

Pure maps and purification

Call a map f pure when $f=0$, or any dilation of f is trivial:

Pure maps and purification

Call a map f pure when $f=0$, or any dilation of f is trivial:

Axiom 1: Pure maps form environment structure, and pure dilations are essentially unique: for any f, g pure

for some \dagger-iso U.

Kernels and complements

For \dagger-kernel k, its complement is $k^{\perp}:=\operatorname{ker}\left(k^{\dagger}\right)$.

Kernels and complements

For \dagger-kernel k, its complement is $k^{\perp}:=\operatorname{ker}\left(k^{\dagger}\right)$.
Axiom 2: The category has \dagger-kernels which are causally complemented:

Pure exclusion

Call $f: A \rightarrow B$ causal when $\overline{\overline{+} B} \circ f=\overline{\overline{{ }_{+}^{A}}}$.

Pure exclusion

Call $f: A \rightarrow B$ causal when $\overline{\overline{+}} B \circ f=\overline{\mathcal{F}_{A}}$.
Axiom 3: Every non-zero object A has a causal pure state. If furthermore $A \not \equiv I$, then for all causal pure $\psi: I \rightarrow A$ there is a non-zero e such that

$$
\frac{\widehat{e}}{\sqrt[4]{ }}=0
$$

Conditioning

Call states $|0\rangle,|1\rangle: I \rightarrow A$ orthonormal when

$$
|0\rangle^{\dagger} \circ|0\rangle=\mathrm{id}_{I}=|1\rangle^{\dagger} \circ|1\rangle \text { and }|1\rangle^{\dagger} \circ|0\rangle=0
$$

Conditioning

Call states $|0\rangle,|1\rangle: I \rightarrow A$ orthonormal when

$$
|0\rangle^{\dagger} \circ|0\rangle=\mathrm{id}_{I}=|1\rangle^{\dagger} \circ|1\rangle \text { and }|1\rangle^{\dagger} \circ|0\rangle=0
$$

Axiom 4: For every orthonormal $|0\rangle,|1\rangle: I \rightarrow A$ and any $\rho, \sigma: I \rightarrow B$ there is $f: A \rightarrow B$ with

Matrix theories revisited

When does $\mathrm{CPM}\left(\right.$ Mat $\left._{S}\right)$ satisfy these assumptions for an involutive semi-ring S ?

Matrix theories revisited

When does $\mathrm{CPM}\left(\right.$ Mat $\left._{S}\right)$ satisfy these assumptions for an involutive semi-ring S ?

Definition

A phased ring is a ring

- which is commutative,
- with involution $\left(a^{\dagger}\right)^{\dagger}=a$,
- having no zero-divisors: $a \cdot b=0 \Longrightarrow a=0$ or $b=0$,
- where positive $S^{\text {pos }}:=\left\{a \cdot a^{\dagger}\right\}$ is closed under addition.

Matrix theories revisited

When does $\mathrm{CPM}\left(\right.$ Mat $\left._{S}\right)$ satisfy these assumptions for an involutive semi-ring S ?

Definition

A phased ring is a ring

- which is commutative,
- with involution $\left(a^{\dagger}\right)^{\dagger}=a$,
- having no zero-divisors: $a \cdot b=0 \Longrightarrow a=0$ or $b=0$,
- where positive $S^{\text {pos }}:=\left\{a \cdot a^{\dagger}\right\}$ is closed under addition.

Prop: $\mathrm{CPM}\left(\right.$ Mat $\left._{S}\right)$ satisfies the assumptions iff S is phased ring.
Open question: What are the phased rings? Are they always a field?

We say \mathbf{C} is a Tull-category when it is \dagger-compact, non-trivial,

- has zero morphisms,
- has essentially unique purifications,
- has causally complemented \dagger-kernels,
- can perfectly distinguish non-trivial pure states,
- and can conditionally prepare states.

We say \mathbf{C} is a Tull-category when it is \dagger-compact, non-trivial,

- has zero morphisms,
- has essentially unique purifications,
- has causally complemented \dagger-kernels,
- can perfectly distinguish non-trivial pure states,
- and can conditionally prepare states.

Theorem (Tull,2019)
Let \mathbf{C} be a Tull-category with scalars $R=\mathbf{C}(I, I)$.
Then there is an embedding $\operatorname{CPM}\left(\right.$ Mat $\left._{S}\right) \hookrightarrow \mathbf{C}$ where S is a phased ring satisfying $R \cong S^{\text {pos }}$.

We say \mathbf{C} is a Tull-category when it is \dagger-compact, non-trivial,

- has zero morphisms,
- has essentially unique purifications,
- has causally complemented \dagger-kernels,
- can perfectly distinguish non-trivial pure states,
- and can conditionally prepare states.

Theorem (Tull,2019)
Let \mathbf{C} be a Tull-category with scalars $R=\mathbf{C}(I, I)$.
Then there is an embedding $\operatorname{CPM}\left(\right.$ Mat $\left._{S}\right) \hookrightarrow \mathbf{C}$ where S is a phased ring satisfying $R \cong S^{\text {pos }}$. If R is bounded, then $\operatorname{CPM}\left(\right.$ Mat $\left._{S}\right) \cong \mathbf{C}$

We say \mathbf{C} is a Tull-category when it is \dagger-compact, non-trivial,

- has zero morphisms,
- has essentially unique purifications,
- has causally complemented \dagger-kernels,
- can perfectly distinguish non-trivial pure states,
- and can conditionally prepare states.

Theorem (Tull,2019)
Let \mathbf{C} be a Tull-category with scalars $R=\mathbf{C}(I, I)$.
Then there is an embedding $\operatorname{CPM}\left(\right.$ Mat $\left._{S}\right) \hookrightarrow \mathbf{C}$ where S is a phased ring satisfying $R \cong S^{\text {pos }}$. If R is bounded, then $\operatorname{CPM}\left(\right.$ Mat $\left._{S}\right) \cong \mathbf{C}$

Corollary: If \mathbf{C} is a Tull-category with $\mathbf{C}(I, I)=\mathbb{R}_{\geqslant 0}$, then $\mathbf{C} \cong \mathbf{C P M}$ or $\mathbf{C} \cong \mathbf{C P} \mathbf{M}_{\mathbb{R}}$.

Deriving real numbers

- So why real numbers?

Deriving real numbers

- So why real numbers?
- Because probabilities are real numbers.

Deriving real numbers

- So why real numbers?
- Because probabilities are real numbers.
- So why are probabilities real numbers?
- Can we derive the structure of $[0,1]$ from abstract grounds?

Structure of probabilities

- (Partially-defined) addition for coarse-graining.
- Minimal and maximal element for "certainty".
- Negation. These three things give you effect algebras

Structure of probabilities

- (Partially-defined) addition for coarse-graining.
- Minimal and maximal element for "certainty".
- Negation. These three things give you effect algebras
- Multiplication for joint events. Gives you effect monoids.

Structure of probabilities

- (Partially-defined) addition for coarse-graining.
- Minimal and maximal element for "certainty".
- Negation. These three things give you effect algebras
- Multiplication for joint events. Gives you effect monoids.
- Some kind of limiting behaviour. Gives you ω-effect monoids.

Structure of probabilities

- (Partially-defined) addition for coarse-graining.
- Minimal and maximal element for "certainty".
- Negation. These three things give you effect algebras
- Multiplication for joint events. Gives you effect monoids.
- Some kind of limiting behaviour. Gives you ω-effect monoids.

This turns out to be enough to construct real numbers.

Addition and coarse-graining

Suppose we have a probability distribution $P\left(X=x_{i}\right)$ for $x_{i} \in\left\{x_{1}, \ldots x_{n}\right\}$ where the x_{i} represent mutually disjoint events.

- Then $P\left(X=x_{i}\right)+P\left(X=x_{j}\right)$ represents the probability of X being x_{i} or x_{j}.

Addition and coarse-graining

Suppose we have a probability distribution $P\left(X=x_{i}\right)$ for $x_{i} \in\left\{x_{1}, \ldots x_{n}\right\}$ where the x_{i} represent mutually disjoint events.

- Then $P\left(X=x_{i}\right)+P\left(X=x_{j}\right)$ represents the probability of X being x_{i} or x_{j}.
- Maximal coarse-graining $\sum_{x_{i}} P\left(x_{i}\right)=1$ gives "certainty" 1 .
- The "empty" coarse-graining gives "falsity" 0 .

Addition and coarse-graining

Suppose we have a probability distribution $P\left(X=x_{i}\right)$ for $x_{i} \in\left\{x_{1}, \ldots x_{n}\right\}$ where the x_{i} represent mutually disjoint events.

- Then $P\left(X=x_{i}\right)+P\left(X=x_{j}\right)$ represents the probability of X being x_{i} or x_{j}.
- Maximal coarse-graining $\sum_{x_{i}} P\left(x_{i}\right)=1$ gives "certainty" 1 .
- The "empty" coarse-graining gives "falsity" 0 .
- Coarse-graining over all but one event gives negation:

$$
\sum_{x_{i} \neq x_{j}} P\left(x_{i}\right)=1-P\left(X=x_{j}\right)
$$

Effect algebras

Definition

An effect algebra ($E, \otimes, 0,1$) has

- partial commutative associative \otimes,
- with $a \otimes 0=a$ for all a,
- and $\forall a$ unique a^{\perp} with $a \otimes a^{\perp}=1$,
- such that $a \perp 1$ implies $a=0$.

Effect algebras

Definition

An effect algebra $(E, \boxtimes, 0,1)$ has

- partial commutative associative \otimes,
- with $a \otimes 0=a$ for all a,
- and $\forall a$ unique a^{\perp} with $a \boxtimes a^{\perp}=1$,
- such that $a \perp 1$ implies $a=0$.

Examples

- $[0,1]$ with $a^{\perp}:=1-a$.
- A Boolean algebra: addition defined when $a \wedge b=0$ and then $a \otimes b=a \vee b . a^{\perp}$ is regular negation.
- $\operatorname{Cstar}(\mathbb{C}, \mathfrak{A}) \cong[0,1]_{\mathfrak{A}}$ with $a^{\perp}:=1-a$.

Effect algebras

Definition

An effect algebra $(E, \boxtimes, 0,1)$ has

- partial commutative associative \otimes,
- with $a \otimes 0=a$ for all a,
- and $\forall a$ unique a^{\perp} with $a \otimes a^{\perp}=1$,
- such that $a \perp 1$ implies $a=0$.

Examples

- $[0,1]$ with $a^{\perp}:=1-a$.
- A Boolean algebra: addition defined when $a \wedge b=0$ and then $a \otimes b=a \vee b . a^{\perp}$ is regular negation.
- $\operatorname{Cstar}(\mathbb{C}, \mathfrak{A}) \cong[0,1]_{\mathfrak{A}}$ with $a^{\perp}:=1-a$.
- More generally $[0,1]_{V}$ for any ordered vector space V.

Joint events

If we have probability distributions $P\left(X=x_{i}\right)$ and $Q\left(Y=y_{j}\right)$ then to describe probability of $P=x_{i}$ and $Q=y_{j}$ we need $P\left(x_{i}\right) \cdot Q\left(y_{j}\right)$.

Joint events

If we have probability distributions $P\left(X=x_{i}\right)$ and $Q\left(Y=y_{j}\right)$ then to describe probability of $P=x_{i}$ and $Q=y_{j}$ we need $P\left(x_{i}\right) \cdot Q\left(y_{j}\right)$.
Definition
An effect monoid ($M, \otimes, 0,1, \cdot)$ is an effect algebra with associative distributive unital multiplication:

$$
(a \otimes b) \cdot c=(a \cdot c) \otimes(b \cdot c) \quad c \cdot(a \otimes b)=(c \cdot a) \otimes(c \cdot b)
$$

Joint events

If we have probability distributions $P\left(X=x_{i}\right)$ and $Q\left(Y=y_{j}\right)$ then to describe probability of $P=x_{i}$ and $Q=y_{j}$ we need $P\left(x_{i}\right) \cdot Q\left(y_{j}\right)$.
Definition
An effect monoid ($M, \otimes, 0,1, \cdot)$ is an effect algebra with associative distributive unital multiplication:

$$
(a \otimes b) \cdot c=(a \cdot c) \otimes(b \cdot c) \quad c \cdot(a \otimes b)=(c \cdot a) \otimes(c \cdot b)
$$

Examples:

- $[0,1]$.
- Any Boolean algebra: $a \otimes b:=a \vee b, a \cdot b:=a \wedge b$.
- $\{f: X \rightarrow[0,1]$ continuous $\}$ for a compact Hausdorff space X (i.e. unit interval of commutative unital C^{*}-algebra).

A categorical aside

Definition
Let P be a poset and $a, b \in P$.

- P is bounded when it has min 0 and max 1 . BPos morphisms preserves 0 and 1 .

A categorical aside

Definition
Let P be a poset and $a, b \in P$.

- P is bounded when it has min 0 and max 1 . BPos morphisms preserves 0 and 1 .
- An orthocomplement has $\left(a^{\perp}\right)^{\perp}=a$ and $a \wedge a^{\perp}=0$.
- a and b orthogonal when $a \leqslant b^{\perp}$.

A categorical aside

Definition

Let P be a poset and $a, b \in P$.

- P is bounded when it has min 0 and max 1 . BPos morphisms preserves 0 and 1 .
- An orthocomplement has $\left(a^{\perp}\right)^{\perp}=a$ and $a \wedge a^{\perp}=0$.
- a and b orthogonal when $a \leqslant b^{\perp}$.
- P is orthomodular when $a \leqslant b^{\perp}$ implies $a=b^{\perp} \wedge(a \vee b)$. OMP morphism preserves orthogonality and \vee.

A categorical aside

Definition

Let P be a poset and $a, b \in P$.

- P is bounded when it has min 0 and max 1 . BPos morphisms preserves 0 and 1 .
- An orthocomplement has $\left(a^{\perp}\right)^{\perp}=a$ and $a \wedge a^{\perp}=0$.
- a and b orthogonal when $a \leqslant b^{\perp}$.
- P is orthomodular when $a \leqslant b^{\perp}$ implies $a=b^{\perp} \wedge(a \vee b)$. OMP morphism preserves orthogonality and \vee.

Kalmbach extension
Forgetful functor $U: \mathbf{O M P} \rightarrow \mathbf{B P o s}$ has left adjoint K.

A categorical aside

Definition

Let P be a poset and $a, b \in P$.

- P is bounded when it has min 0 and max 1 .

BPos morphisms preserves 0 and 1 .

- An orthocomplement has $\left(a^{\perp}\right)^{\perp}=a$ and $a \wedge a^{\perp}=0$.
- a and b orthogonal when $a \leqslant b^{\perp}$.
- P is orthomodular when $a \leqslant b^{\perp}$ implies $a=b^{\perp} \wedge(a \vee b)$. OMP morphism preserves orthogonality and \vee.

Kalmbach extension

Forgetful functor $U: \mathbf{O M P} \rightarrow \mathbf{B P o s}$ has left adjoint K.
Theorem (Jenča, 2015): BPos $^{K} \cong$ EA
Theorem (Jacobs \& Mandemaker 2012): Effect monoids are monoids in EA.

Countable sums

When we have infinite set of events $\left\{x_{i}\right\}_{i \in I}$, we want to be able to define union of countable events: $\sum_{j \in J} P\left(x_{j}\right)$.
Definition (informal)
An ω-effect-algebra is an EA where an infinite sum exists if all finite subsums exist.

Countable sums

When we have infinite set of events $\left\{x_{i}\right\}_{i \in l}$, we want to be able to define union of countable events: $\sum_{j \in J} P\left(x_{j}\right)$.
Definition (informal)
An ω-effect-algebra is an EA where an infinite sum exists if all finite subsums exist.

Equivalent definition
EA is ω EA iff increasing sequences $a_{1} \leqslant a_{2} \leqslant \ldots$ have a supremum.

Countable sums

When we have infinite set of events $\left\{x_{i}\right\}_{i \in I}$, we want to be able to define union of countable events: $\sum_{j \in J} P\left(x_{j}\right)$.
Definition (informal)
An ω-effect-algebra is an EA where an infinite sum exists if all finite subsums exist.

Equivalent definition

EA is ω EA iff increasing sequences $a_{1} \leqslant a_{2} \leqslant \ldots$ have a supremum.
Examples:

- $[0,1]$.
- ω-complete Boolean algebra.
- $C(X,[0,1])$ for X basically disconnected.

Our definition of abstract probabilities

So we want to model probabilities by an ω effect monoid $(M, 0,1, \oplus, \perp, \cdot)$:

- It has partial sum \otimes.
- It has negation \perp and min and max element 0 and 1 .
- It has multiplication .
- It has suprema of increasing sequences.

Note: We are not requiring countable distributivity or commutativity of multiplication. This turns out to follow for free (non-trivially).

Characterising ω-effect-monoids

Theorem (Westerbaan, Westerbaan \& vdW, 2020)
An ω-effect-monoid M embeds into $M_{1} \oplus M_{2}$ where

- M_{1} is an ω-complete Boolean algebra
- $M_{2}=\{f: X \rightarrow[0,1]$ cont. $\}$ for basically disconnected X.

Characterising ω-effect-monoids

Theorem (Westerbaan, Westerbaan \& vdW, 2020)
An ω-effect-monoid M embeds into $M_{1} \oplus M_{2}$ where

- M_{1} is an ω-complete Boolean algebra
- $M_{2}=\{f: X \rightarrow[0,1]$ cont. $\}$ for basically disconnected X.

Corollary
ω-effect-monoids are commutative.

Characterising ω-effect-monoids

Theorem (Westerbaan, Westerbaan \& vdW, 2020)
An ω-effect-monoid M embeds into $M_{1} \oplus M_{2}$ where

- M_{1} is an ω-complete Boolean algebra
- $M_{2}=\{f: X \rightarrow[0,1]$ cont. $\}$ for basically disconnected X.

Corollary
ω-effect-monoids are commutative.
Call M irreducible when $M \cong M_{1} \oplus M_{2}$ implies $M_{i}=\{0\}$.
Corollary
The only irreducible ω-effect-monoids are $\{0\},\{0,1\}$ and $[0,1]$.

So why are probabilities modelled by $[0,1]$?
An answer: it is the only non-trivial irreducible ω-effect-monoid.

The result more category-theoretically

Theorem (vdW, 2021)
Category of ω-effect-monoids is monadic over category of bounded posets.

The result more category-theoretically

Theorem (vdW, 2021)
Category of ω-effect-monoids is monadic over category of bounded posets.

Theorem (Westerbaan ${ }^{2}$ \& vdW, 2020)
The only irreducible ω-effect-monoids are $\{0\},\{0,1\}$ and $[0,1]$.
So: $[0,1]$ is unique non-initial, non-final irreducible Eilenberg-Moore algebra of particular monad over bounded posets.

Another way to phrase it

Theorem
There is a monad T over $\mathbf{B P o s}$ such that $[0,1]$ is the unique irreducible non-initial, non-final T-algebra.

Another way to phrase it

Theorem

There is a monad T over BPos such that $[0,1]$ is the unique irreducible non-initial, non-final T-algebra.
Furthermore, $\mathbf{B P o s}{ }^{T} \cong \omega \mathbf{E M}$ and these algebras have

- a partial order,
- a (partially defined) countable addition,
- a negation,
- and a multiplication.

So we have captured what is special about $[0,1]$ categorically.

Some things we can do with these results.

- A new Stone duality.
- (Characterise Generalised Probabilistic Theories).
- (Characterise normal sequential effect algebras)
- (Reconstruct quantum theory)

Directed-complete effect monoids

Definition
A subset $S \subseteq P$ of a poset P is directed when $\forall a, b \in S, \exists c \in S$
with $a \leqslant c$ and $b \leqslant c$.
P is directed complete when every directed subset has supremum.

Directed-complete effect monoids

Definition

A subset $S \subseteq P$ of a poset P is directed when $\forall a, b \in S, \exists c \in S$ with $a \leqslant c$ and $b \leqslant c$.
P is directed complete when every directed subset has supremum.
Theorem (Westerbaan² \& vdW, 2020)
A directed-complete effect monoid M is $M \cong M_{1} \oplus M_{2}$ where

- M_{1} is complete Boolean algebra.
- $M_{2}:=\{f: X \rightarrow[0,1]$ cont. $\}$ with X extremally disconnected.

Stone duality

Let CBA be category of complete Boolean algebras.
Recall that a space is Stonean when it is extremally disconnected compact Hausdorff.

Stone duality

Let CBA be category of complete Boolean algebras.
Recall that a space is Stonean when it is extremally disconnected compact Hausdorff.
Stone duality: CBA \cong Stone $^{\text {op }}$.

Stone duality

Let CBA be category of complete Boolean algebras.
Recall that a space is Stonean when it is extremally disconnected compact Hausdorff.
Stone duality: $\mathbf{C B A} \cong$ Stone $^{\text {op }}$.

Definition

Let Stone $_{\text {sub }}$ be cat of Stonean spaces $w /$ designated clopen subset.
l.e. objects (X, A) where X is Stonean, and $A \subseteq X$ is clopen.
$f:(X, A) \rightarrow(Y, B)$ is $f: X \rightarrow Y$ continuous \& $f(A) \subseteq B$.

Stone duality

Let CBA be category of complete Boolean algebras.
Recall that a space is Stonean when it is extremally disconnected compact Hausdorff.
Stone duality: CBA \cong Stone $^{\mathrm{op}}$.

Definition

Let Stone $_{\text {sub }}$ be cat of Stonean spaces $w /$ designated clopen subset.
I.e. objects (X, A) where X is Stonean, and $A \subseteq X$ is clopen.
$f:(X, A) \rightarrow(Y, B)$ is $f: X \rightarrow Y$ continuous \& $f(A) \subseteq B$.
Theorem
Let DCEM be cat of directed-complete effect monoids.
Then DCEM \cong Stone $_{\text {sub }}^{\text {op }}$.

Summary

- Categorical characterisation of Hilb as nice \dagger-category
- Characterisation of categories of form CPM(C).
- Operational characterisation of $\mathbf{C P M}_{S}$ for $S=\mathbb{C}$ or $S=\mathbb{R}$.
- Categorical characterisation of $[0,1]$.

Open questions

- Characterise fHilb in similar way to Hilb.
- What are the possible phased rings in Tull-categories?
- Is there a clean categorical characterisation of CPM?
- And what about infinite-dimensional C*-algebras?

Thank you for your attention!

Chris Heunen \& Andre Kornell 2021, arXiv:2109.07418
Axioms for the category of Hilbert spaces
Peter Selinger 2007, DOI:10.1016/j.entcs.2006.12.018
Dagger compact closed categories and completely positive maps
Bob Coecke 2007, DOI:10.1016/j.entcs.2008.04.014
Axiomatic description of mixed states from Selinger's CPM-construction
Sean Tull 2018, arXiv:1804.02265
A Categorical Reconstruction of Quantum Theory
Abraham Westerbaan, Bas Westerbaan \& vdW 2019, arXiv:1912.10040 A characterisation of ordered abstract probabilities
vdW 2021, arXiv: 2106.10094
A Categorical Construction of the Real Unit Interval

