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theory?
Can we derive quantum theory using category theory?
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Hilbert space of composite system is given by tensor product.
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When we observe A, state is updated to A |i)).
Schrodinger equation: [¢(t)) = et 1),
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So many questions...

» Why Hilbert space?
» Why a complex one?

» Why are states unit vectors and why up to global phase?

» Why are observables linear operators on the Hilbert space?
» Why self-adjoint?
» Why are probabilities given by the inner product?

» Why is time-evolution given by a unitary map of the form e*H?

» Why is a composite system described by a tensor product?



Some have good answers

Given we know that states are unit vectors in a Hilbert space:

» Gleason's theorem tells us why measurement updating works
the way it does.

» Stone's theorem on one-parameter unitary groups gives
Schrodinger equation.

> Principle of local tomography gives tensor product.



Core question: why complex Hilbert spaces?



In this talk

v

Categorical characterisation of Hilb by Heunen and Kornell.

v

Characterisation of completely-positive maps by Selinger &
Coecke.
Characterisation of CPM(fHilb) by Tull.

Characterisation of probabilities [0, 1] by Westerbaan,
Westerbaan, vdW.

v

v
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Hilbert spaces

Definition
A complex vector space H is a Hilbert space when it has
» an inner-product (-, -y : H x H — H,

» it is complete in the norm ||a|| = 4/{a, a).

Write Hilb for cat of Hilbert spaces and bounded linear maps.
Write fHilb for full subcat of finite-dimensional Hilbert spaces.

Note: as category fHilb =~ fVectc.
This is because we aren’t capturing the inner product.
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Dagger-categories

Definition

Cat C is f-category when it has functor f : C — C°P satisfying
t(A) = A and 12 = id.

Concretely dagger of f: A— Bisa 1 : B— A such that
(FY' = fand (Fog)l =gl ofl.

Bounded maps A : . — K have unique adjoint AT : K — H
satisfying (Av, w)i = (v, ATw)y,. Makes Hilb into f-category.

For v e H we have v : C — H, and then (v, w)3, = VI (w).
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Structure of Hilb

» Tensor product of Hilbert spaces is closure of tensor v.space.
Gives -symmetric monoidal structure: all iso’s f~1 = fT.

v

T-biproducts: Direct sum of Hilb spaces is Hilb space.

v

T-equalisers: Any two maps f, g : H — K have equaliser
e : & — H which is f-mono: ef o e = ide.
So Hilb has all {-limits.

Any f-mono is also a f-kernel.

v

v

] f
Ker(f) <% A —— B
N 0
3tk i
C

Can we characterise Hilb uniquely by these properties?
No: because HilbxHilb has the same structure.
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Simple monoidal unit

In Hilb the monoidal unit [ := C is

» simple: it has exactly two subobjects, i.e.
if f:H — | is mono, then H =0or H = /.

» Monoidally separating: for f,g : HQ K — L we have f = g iff
folvRw)=go(vw)forallv:l—>Hand w:/|— K.
Lemma (Heunen, 2009)

The scalars C(/, 1) in a f-category C satisfying all the previous
properties form an involutive field.

So is this enough?
No, because fHilbg also satisfies these properties.
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A final axiom

The wide subcategory of f-mono's of Hilb has directed colimits.
An increasing net of Hilb spaces {#;}ic;, " — H; for i < j, has a
‘union’ Hilbert space H; — H.

Note: not true in fHilb as C < C? < C3 < --- has colimit L?(N).
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Characterisation of Hilb

Definition (Heunen & Kornell 2021)
A Hilbert category is a T-symmetric monoidal category with
» f-biproducts,
> f-equalisers,
> all f-mono's being f-kernels,
> a simple monoidally separating unit,

» and directed colimits of T-mono’s.

Theorem (Heunen & Kornell 2021)
Any Hilbert category is equivalent to either Hilb or Hilbg.
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Proof sketch

» Scalars are field, so monoidal separation makes it a category of
vector spaces.

» Kernels give many projections (idempotents).
» Projections form orthomodular lattice.
» Directed colimits give infinite-dimensional spaces.

» Solér’'s Theorem: If infinite-dim space is orthomodular,
then field is H, C or R.

» H is not commutative, so scalars must be C or R.
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Open questions

» How to characterise just Hilbc and not also Hilbg?

» How to characterise fHilb?

» Can you get rid of the requirement the unit be simple to get a
category of (pre)sheaves over Hilb?

» How to characterise mixed quantum theory, which includes
measurement and noise?
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Mixed states

We will focus on fHilb now.
» Write B(H) := { A: H — H bounded }.
» Call Ae B(H) positive when (Av,v) > 0 for all v.
» A density operator is a positive p € B(H) with tr(p) = 1.
» For any [¢)) € H, the map |Xv)| is a density matrix.
[X91(19)) = W b |9).

» We call |¢X1| a pure state, and density operators mixed states.

To work with mixed states in quantum theory, we use B(#) instead
of H directly.
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Completely-positive maps

What are the maps allowed in mixed quantum theory?
These need to send density operators to density operators.

Call®: B(H) —» B(K)
» positive when ®(A) = 0 for all A > 0.
» trace-preserving when tr(®(A)) = tr(A) for all A.
For positive trace-preserving ® we see ®(p) is density op if p is.
However, this doesn't deal with tensors.
Definition
Call ® : B(H) — B(K) completely positive when
P®id, : B(H®C") - B(K® C") is positive for all n.

Write CPM for cat of fin.dim. Hilb spaces and completely pos maps.
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In mixed setting: A: B(H) — B(K) by A(C) = ACAT.
This gives a functor fHilb — CPM.

We call A a pure map.
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Stinespring dilation
Every completely-positive ® : B(H) — B(K) can be written as
¢ = (idg ®tre) o Aforsome At H—>K®L.

This is also called a purification of .

“Church of the Higher Hilbert Space”
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Dagger-compact categories

A A
Graphical notation for f-categories: I:;:‘l =
B B

Definition
A f-category is t-compact when for all A there exists A* and a state

/i | — A* ® A satisfying the snake equations:

where wire with arrow pointing up is id4, and the other is idgx.

A A B B
B B A A
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Matrix theories

Definition

An involutive semi-ring S is a 'ring without negation’, with an
anti-automorphism satisfying (s")" = s.

Let Matg be cat of matrices over S with standard composition and
Kronecker product as tensor.

Mats is f-compact with (MT); = /\/l}:..

Matc = fHilb.
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Definition
For f-compact C define CPM(C) as cat with same objects, but with
morphisms
B C B
A A

forany f: A—-> B® C in C.
» The doubling functor D : C — CPM(C) maps f to f ® f*.

» CPM(C) has discard map 7;2 = Q

» Morphisms of CPM(C) are generated by D(C) and discarding.
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Hilbert space CPM construction

In the case of Hilbert spaces:
» We have CPM(fHilb) ~ CPM,
» doubling functor gives the pure maps,
» discarding is the trace,

> doubling and trace generating the morphisms is Stinespring
dilation.

Q: Can we identify when a category is of the form CPM(C)?
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B B =
In f-cat with discarding, g is dilation of f when dfj -
A A

Definition (Coecke, 2008)

Let C be f-compact with discarding.
An environment structure is choice of subcat Cp, such that

» Every f in C has dilation in C,,.
A A

AL
» All f, g in C, satisfy CP-axiom: T I:f?
A A
A

A

Theorem: CPM(C,) =~ C.
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Tull's reconstruction of quantum theory

We will now give the axioms from Tull's paper
A categorical reconstruction of quantum theory.

These are categorified versions of the operational axioms of
Chiribella, D'Ariano & Perinotti's
Informational derivation of quantum theory

Intuitively:
» Every map has an essentially unique purification.
» Kernels exist and are well-behaved.

» Every pure state can be perfectly distinguished from at least
one other pure state.

» We can conditionally prepare states.
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Pure maps and purification

Call a map f pure when f = 0, or any dilation of f is trivial:

-~ -t

Axiom 1: Pure maps form environment structure, and pure dilations
are essentially unique: for any f, g pure

L ##

for some f-iso U.
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Kernels and complements

For f-kernel k, its complement is k' := ker(kT).

Axiom 2: The category has f-kernels which are causally
complemented.

R REAE
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Pure exclusion

Call f: A— B causal when g0 f = 4.

Axiom 3: Every non-zero object A has a causal pure state.
If furthermore A % I, then for all causal pure 1 : | — A there is a
non-zero e such that
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Conditioning

Call states |0),|1) : | — A orthonormal when
105 0 10) =id; = |1)T o 1) and |10 ]0) =0

Axiom 4: For every orthonormal |0),|1): / — A and any
p,0 .1 — B thereis f: A— B with

R
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Matrix theories revisited

When does CPM(Mats) satisfy these assumptions for an involutive
semi-ring 57
Definition
A phased ring is a ring
» which is commutative,
» with involution (af) = a,
*» having no zero-divisors: a-b=0 = a=0or b=0,

> where positive SP* := {a- a'} is closed under addition.
Prop: CPM(Matg) satisfies the assumptions iff S is phased ring.

Open question: What are the phased rings? Are they always a field?
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We say C is a Tull-category when it is f-compact, non-trivial,
> has zero morphisms,

> has essentially unique purifications,

v

has causally complemented f-kernels,
» can perfectly distinguish non-trivial pure states,
» and can conditionally prepare states.

Theorem (Tull,2019)

Let C be a Tull-category with scalars R = C(/, ).
Then there is an embedding CPM(Matgs) — C
where S is a phased ring satisfying R =~ SP%.

If R is bounded, then CPM(Mats) =~ C

Corollary: If C is a Tull-category with C(/,/) = Rxo,
then C =~ CPM or C = CPMg.
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So why real numbers?

» Because probabilities are real numbers.

v

So why are probabilities real numbers?

v

Can we derive the structure of [0, 1] from abstract grounds?
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Structure of probabilities

v

(Partially-defined) addition for coarse-graining.

v

Minimal and maximal element for “certainty”.

\4

Negation. These three things give you effect algebras

v

Multiplication for joint events. Gives you effect monoids.

» Some kind of limiting behaviour. Gives you w-effect monoids.

This turns out to be enough to construct real numbers.
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Addition and coarse-graining

Suppose we have a probability distribution P(X = x;) for
xj € {x1,...%n} where the x; represent mutually disjoint events.

» Then P(X = x;) + P(X = x;) represents
the probability of X being x; or x;.

> Maximal coarse-graining >, P(x;) = 1 gives “certainty” 1.
» The “empty” coarse-graining gives “falsity” 0.

» Coarse-graining over all but one event gives negation:
Zx,-;ﬁxj- P(Xi) = 1- 'D(X = XJ)
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An effect algebra (E,©,0,1) has
» partial commutative associative @,
» with a© 0 = a for all a,
» and VYa unique a- with a @ a*+ =1,
» such that a | 1 implies a = 0.
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> with a© 0 = a for all a,
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» such that a | 1 implies a = 0.

Examples
> [0,1] with a* :=1— a.
» A Boolean algebra: addition defined when a A b = 0 and then
a®b=av b. atis regular negation.
» Cstar(C,2l) = [0, 1]y with at :=1—a.



Effect algebras

Definition

An effect algebra (E,©,0,1) has
» partial commutative associative @,
» with a© 0 = a for all a,
» and VYa unique a- with a @ a*+ =1,

» such that a | 1 implies a = 0.
Examples
> [0,1] with at :=1—a.

» A Boolean algebra: addition defined when a A b = 0 and then
a®b=av b. atis regular negation.

» Cstar(C,2l) = [0, 1]y with at :=1—a.

» More generally [0, 1]y for any ordered vector space V.
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If we have probability distributions P(X = x;) and Q(Y = y;) then
to describe probability of P = x; and Q = y; we need P(x;) - Q(y;).
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Joint events

If we have probability distributions P(X = x;) and Q(Y = y;) then
to describe probability of P = x; and Q = y; we need P(x;) - Q(y;).
Definition

An effect monoid (M, ©,0,1,-) is an effect algebra with
associative distributive unital multiplication:

(a@b)-c=(a-c)@(b-c) c-(a@b)=(c-a)@(c-b)

Examples:
» [0, 1].
» Any Boolean algebra: a@ b:=av b, a-b:=a A b.

» {f : X — [0,1] continuous} for a compact Hausdorff space X
(i.e. unit interval of commutative unital C*-algebra).
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Let P be a poset and a,be P.

» P is bounded when it has min 0 and max 1.
BPos morphisms preserves 0 and 1.
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A categorical aside

Definition
Let P be a poset and a,be P.
» P is bounded when it has min 0 and max 1.
BPos morphisms preserves 0 and 1.
(at)t =aand anat =0.
» a and b orthogonal when a < b*.

» P is orthomodular when a < b* implies a = b* A (a v b).
OMP morphism preserves orthogonality and v

> An orthocomplement has

Kalmbach extension
Forgetful functor U : OMP — BPos has left adjoint K.

Theorem (Jena, 2015): BPosX =~ EA
Theorem (Jacobs & Mandemaker 2012): Effect monoids are
monoids in EA.



Countable sums

When we have infinite set of events {x;};c;, we want to be able to
define union of countable events: >, ; P(x;).
Definition (informal)

An w-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.
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Countable sums

When we have infinite set of events {x;};c;, we want to be able to
define union of countable events: >, ; P(x;).

Definition (informal)

An w-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Equivalent definition

EA is wEA iff increasing sequences a; < ap < ... have a supremum.
Examples:

» [0, 1].
» w-complete Boolean algebra.
» C(X,[0,1]) for X basically disconnected.



Our definition of abstract probabilities

So we want to model probabilities by an w effect monoid
(M,0,1,@,L,-):
> It has partial sum @.

» It has negation L and min and max element 0 and 1.

v

It has multiplication -.

v

It has suprema of increasing sequences.

Note: We are not requiring countable distributivity or commutativity
of multiplication. This turns out to follow for free (non-trivially).



Characterising w-effect-monoids

Theorem (Westerbaan, Westerbaan & vdW, 2020)
An w-effect-monoid M embeds into M; @ M> where
» My is an w-complete Boolean algebra
» My = {f : X — [0, 1] cont.} for basically disconnected X.
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Theorem (Westerbaan, Westerbaan & vdW, 2020)
An w-effect-monoid M embeds into M; @ M> where
» My is an w-complete Boolean algebra
» My = {f : X — [0, 1] cont.} for basically disconnected X.

Corollary
w-effect-monoids are commutative.



Characterising w-effect-monoids

Theorem (Westerbaan, Westerbaan & vdW, 2020)
An w-effect-monoid M embeds into M; @ M> where
» My is an w-complete Boolean algebra
» My = {f : X — [0, 1] cont.} for basically disconnected X.

Corollary
w-effect-monoids are commutative.
Call M irreducible when M = M; @& M, implies M; = {0}.

Corollary
The only irreducible w-effect-monoids are {0}, {0,1} and [0, 1].



So why are probabilities modelled by [0, 1]?
An answer: it is the only non-trivial irreducible w-effect-monoid.



The result more category-theoretically

Theorem (vdW, 2021)

Category of w-effect-monoids is monadic over category of bounded
posets.



The result more category-theoretically

Theorem (vdW, 2021)

Category of w-effect-monoids is monadic over category of bounded
posets.

Theorem (Westerbaan? & vdW, 2020)
The only irreducible w-effect-monoids are {0}, {0,1} and [0, 1].

So: [0, 1] is unique non-initial, non-final irreducible Eilenberg-Moore
algebra of particular monad over bounded posets.



Another way to phrase it

Theorem
There is a monad T over BPos such that [0,1] is the unique
irreducible non-initial, non-final T-algebra.



Another way to phrase it

Theorem

There is a monad T over BPos such that [0,1] is the unique
irreducible non-initial, non-final T-algebra.

Furthermore, BPos’ =~ wEM and these algebras have

> a partial order,

» a (partially defined) countable addition,
> a negation,

» and a multiplication.

So we have captured what is special about [0, 1] categorically.



Some things we can do with these results.
» A new Stone duality.
» (Characterise Generalised Probabilistic Theories).
» (Characterise normal sequential effect algebras)

» (Reconstruct quantum theory)



Directed-complete effect monoids

Definition
A subset S < P of a poset P is directed when Ya,be S,3ce S

with a< cand b < c.
P is directed complete when every directed subset has supremum.



Directed-complete effect monoids

Definition
A subset S < P of a poset P is directed when Ya,be S,3ce S

with a< cand b< c.
P is directed complete when every directed subset has supremum.

Theorem (Westerbaan? & vdW, 2020)
A directed-complete effect monoid M is M =~ My @ M, where

» M is complete Boolean algebra.
» My :={f : X — [0,1] cont.} with X extremally disconnected.
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Let CBA be category of complete Boolean algebras.
Recall that a space is Stonean when it is extremally disconnected
compact Hausdorff.
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f:(X,A) - (Y,B)isf: X — Y continuous & f(A) € B.



Stone duality

Let CBA be category of complete Boolean algebras.

Recall that a space is Stonean when it is extremally disconnected
compact Hausdorff.

Stone duality: CBA =~ Stone®P.

Definition

Let Stonegp, be cat of Stonean spaces w/ designated clopen subset.
l.e. objects (X, A) where X is Stonean, and A < X is clopen.
f:(X,A) - (Y,B)isf: X — Y continuous & f(A) € B.

Theorem
Let DCEM be cat of directed-complete effect monoids.
Then DCEM = Stone_, .



Summary

v

Categorical characterisation of Hilb as nice f-category

v

Characterisation of categories of form CPM(C).
Operational characterisation of CPMg for S = C or S = R.

Categorical characterisation of [0, 1].

v

v



Open questions

v

Characterise fHilb in similar way to Hilb.

v

What are the possible phased rings in Tull-categories?

v

Is there a clean categorical characterisation of CPM?

v

And what about infinite-dimensional C*-algebras?
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