
Simulation of quantum circuits
by ZX-diagram contraction

John van de Wetering

john@vdwetering.name

Institute for Computing and Information Sciences
Radboud University Nijmegen

September 6, 2019

Holy Trinity of quantum circuits

Holy Trinity of quantum circuits

Holy Trinity of quantum circuits

Quantum circuit simulation

The Problem: Given quantum circuit C , and input state |ψy,
answer some question about C |ψy.

E.g. Find the probability |x0 ¨ ¨ ¨ 0|C |ψy|2.

Why do we care?

§ Verification of correctness of circuits.

§ Modelling physical systems.

§ Understand when quantum supremacy has been reached.

Quantum circuit simulation

The Problem: Given quantum circuit C , and input state |ψy,
answer some question about C |ψy.
E.g. Find the probability |x0 ¨ ¨ ¨ 0|C |ψy|2.

Why do we care?

§ Verification of correctness of circuits.

§ Modelling physical systems.

§ Understand when quantum supremacy has been reached.

Quantum circuit simulation

The Problem: Given quantum circuit C , and input state |ψy,
answer some question about C |ψy.
E.g. Find the probability |x0 ¨ ¨ ¨ 0|C |ψy|2.

Why do we care?

§ Verification of correctness of circuits.

§ Modelling physical systems.

§ Understand when quantum supremacy has been reached.

Weak versus Strong simulation

Suppose we measure all qubits in computational basis at the end
of the circuit. Then we get a probability distribution

Ppx1 ¨ ¨ ¨ xnq “ |xx1 ¨ ¨ ¨ xn|C |ψy|2

Weak simulation: sample from this distribution.
This is BQP-complete.

Strong simulation: get any marginal probability of Ppx1 ¨ ¨ ¨ xnq.
This is #P-hard.

Weak versus Strong simulation

Suppose we measure all qubits in computational basis at the end
of the circuit. Then we get a probability distribution

Ppx1 ¨ ¨ ¨ xnq “ |xx1 ¨ ¨ ¨ xn|C |ψy|2

Weak simulation: sample from this distribution.
This is BQP-complete.

Strong simulation: get any marginal probability of Ppx1 ¨ ¨ ¨ xnq.
This is #P-hard.

Weak versus Strong simulation

Suppose we measure all qubits in computational basis at the end
of the circuit. Then we get a probability distribution

Ppx1 ¨ ¨ ¨ xnq “ |xx1 ¨ ¨ ¨ xn|C |ψy|2

Weak simulation: sample from this distribution.
This is BQP-complete.

Strong simulation: get any marginal probability of Ppx1 ¨ ¨ ¨ xnq.
This is #P-hard.

Direct simulation

Write n-qubit state as 2n complex numbers.
Every gate in the circuit modifies this vector.

§ Naively, for n “ 50 would take « 1000TB.

§ But n « 80 has been achieved in practice by being smart.
(exploiting sparsity, limited depth of circuit, etc.)

All these methods in a sense rely on tensor contraction.
They are all exponential in number of qubits.

Direct simulation

Write n-qubit state as 2n complex numbers.
Every gate in the circuit modifies this vector.

§ Naively, for n “ 50 would take « 1000TB.

§ But n « 80 has been achieved in practice by being smart.
(exploiting sparsity, limited depth of circuit, etc.)

All these methods in a sense rely on tensor contraction.
They are all exponential in number of qubits.

Direct simulation

Write n-qubit state as 2n complex numbers.
Every gate in the circuit modifies this vector.

§ Naively, for n “ 50 would take « 1000TB.

§ But n « 80 has been achieved in practice by being smart.
(exploiting sparsity, limited depth of circuit, etc.)

All these methods in a sense rely on tensor contraction.
They are all exponential in number of qubits.

Direct simulation

Write n-qubit state as 2n complex numbers.
Every gate in the circuit modifies this vector.

§ Naively, for n “ 50 would take « 1000TB.

§ But n « 80 has been achieved in practice by being smart.
(exploiting sparsity, limited depth of circuit, etc.)

All these methods in a sense rely on tensor contraction.
They are all exponential in number of qubits.

Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
Clifford circuit C & |T y magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
|ψy “

řn
i λi |φiy.

3. Note: Each C |φiy can be efficiently simulated!

Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
Clifford circuit C & |T y magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
|ψy “

řn
i λi |φiy.

3. Note: Each C |φiy can be efficiently simulated!

Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
Clifford circuit C & |T y magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
|ψy “

řn
i λi |φiy.

3. Note: Each C |φiy can be efficiently simulated!

Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
Clifford circuit C & |T y magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
|ψy “

řn
i λi |φiy.

3. Note: Each C |φiy can be efficiently simulated!

Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
Clifford circuit C & |T y magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
|ψy “

řn
i λi |φiy.

3. Note: Each C |φiy can be efficiently simulated!

Stabilizer decompositions 2

Given Clifford circuit C and input |ψy “
řn

i λi |φiy
where the |φiy are Clifford. How do we approximate C |ψy?

Two methods:

1. Monte-Carlo over the |φiy weighted by |λi |.
Polynomial in the negativity: λ “

řn
i |λi |.

2. Compute
řn

i λiC |φiy.
Polynomial in the stabilizer rank: Rp|ψyq “ n.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.

Stabilizer decompositions 2

Given Clifford circuit C and input |ψy “
řn

i λi |φiy
where the |φiy are Clifford. How do we approximate C |ψy?

Two methods:

1. Monte-Carlo over the |φiy weighted by |λi |.
Polynomial in the negativity: λ “

řn
i |λi |.

2. Compute
řn

i λiC |φiy.
Polynomial in the stabilizer rank: Rp|ψyq “ n.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.

Stabilizer decompositions 2

Given Clifford circuit C and input |ψy “
řn

i λi |φiy
where the |φiy are Clifford. How do we approximate C |ψy?

Two methods:

1. Monte-Carlo over the |φiy weighted by |λi |.
Polynomial in the negativity: λ “

řn
i |λi |.

2. Compute
řn

i λiC |φiy.
Polynomial in the stabilizer rank: Rp|ψyq “ n.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.

Stabilizer decompositions 2

Given Clifford circuit C and input |ψy “
řn

i λi |φiy
where the |φiy are Clifford. How do we approximate C |ψy?

Two methods:

1. Monte-Carlo over the |φiy weighted by |λi |.
Polynomial in the negativity: λ “

řn
i |λi |.

2. Compute
řn

i λiC |φiy.
Polynomial in the stabilizer rank: Rp|ψyq “ n.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.

Stabilizer decompositions 2

Given Clifford circuit C and input |ψy “
řn

i λi |φiy
where the |φiy are Clifford. How do we approximate C |ψy?

Two methods:

1. Monte-Carlo over the |φiy weighted by |λi |.
Polynomial in the negativity: λ “

řn
i |λi |.

2. Compute
řn

i λiC |φiy.
Polynomial in the stabilizer rank: Rp|ψyq “ n.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.

Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.

Hence:
Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468

Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468

Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2,

and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468

Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468

Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468

The goal:

combine tensor contraction

& stabilizer decompositions

using the ZX-calculus.

ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

Spiders can be wired in any way:

α

π
2

3π
2

β

π

0

ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

Spiders can be wired in any way:

α

π
2

3π
2

β

π

0

ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

Spiders can be wired in any way:

α

π
2

3π
2

β

π

0

Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

S “ π
2 T “ π

4

H “ := π
2

π
2

π
2

CNOT “ CZ “ “

Universality

Any linear map between qubits can be represented
as a ZX-diagram.

Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

S “ π
2 T “ π

4

H “ := π
2

π
2

π
2

CNOT “ CZ “ “

Universality

Any linear map between qubits can be represented
as a ZX-diagram.

Rules for ZX-diagrams: The ZX-calculus

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

p-1qaα“
aπ

aπ

aπ α

..
.

..
.

aπ aπ

..
.

aπ
α “

..
.

aπ

aπ

α

..
.“ α

..
.

“

“

“

α, β P r0, 2πs, a P t0, 1u

Completeness of the ZX-calculus

Theorem
ZX-diagrams representing same linear map,
can be transformed into one another
using previous rules (and some additional ones).

Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.

2. Simplify using ZX-calculus rules.

3. Replace magic states by stabilizer decomposition.

4. Repeat.

5. ...

6. Profit!

Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.

2. Simplify using ZX-calculus rules.

3. Replace magic states by stabilizer decomposition.

4. Repeat.

5. ...

6. Profit!

Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.

2. Simplify using ZX-calculus rules.

3. Replace magic states by stabilizer decomposition.

4. Repeat.

5. ...

6. Profit!

Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)

But:

§ All rewrites now need to be scalar accurate.

§ We no longer care about circuit extraction,
so we can do more stuff!

Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)
But:

§ All rewrites now need to be scalar accurate.

§ We no longer care about circuit extraction,
so we can do more stuff!

Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)
But:

§ All rewrites now need to be scalar accurate.

§ We no longer care about circuit extraction,
so we can do more stuff!

Scalar-accurate local complementation and pivot

˘π
2

α1 αn

...... ...
“

...
α1¯

π
2

...
αn¯

π
2

α2

...

αń 1

...

α2¯
π
2

...
αń 1¯

π
2

...

...
e˘iπ{4

?
2
pn´1qpn´2q

2

jπ
α1

“αn

βm

β1

γ1

γl

kπ

...

...

...
αn ` kπ

β1 ` pj ` k ` 1qπ

...
βm ` pj ` k ` 1qπ

γ1 ` jπα1 ` kπ
......

γl ` jπ

...

...

...

...

...

...

...

...
...

...

...

...

p´1qab
?

2
pn´1qm

?
2
pl´1qm

?
2
pn´1qpl´1q

These + variations kill all internal Clifford spiders.

Scalar-accurate local complementation and pivot

˘π
2

α1 αn

...... ...
“

...
α1¯

π
2

...
αn¯

π
2

α2

...

αń 1

...

α2¯
π
2

...
αń 1¯

π
2

...

...
e˘iπ{4

?
2
pn´1qpn´2q

2

jπ
α1

“αn

βm

β1

γ1

γl

kπ

...

...

...
αn ` kπ

β1 ` pj ` k ` 1qπ

...
βm ` pj ` k ` 1qπ

γ1 ` jπα1 ` kπ
......

γl ` jπ

...

...

...

...

...

...

...

...
...

...

...

...

p´1qab
?

2
pn´1qm

?
2
pl´1qm

?
2
pn´1qpl´1q

These + variations kill all internal Clifford spiders.

Further optimization

From previous talk:

α β..
.

..
. = α ` β..
.

..
.

α

β
α1

αn

..
.

α ` β α1

αn

..
.=

...

... ...

...

´

1?
2

¯n´1

New rule: Supplementarity

Rule used in ZX for completeness:

α α ` π

=

2α ` π

1
2

Can be generalised to following four cases:

α

α ` π

=..
.

2α ` π

..
.

1
2n

n n
α

α ` π

=..
.

2α

..
.

1
2n`1

n n

α

´α ` π

=..
.

2α ` π π

π

..
.

- e
´iα

2n
n n

α

´α ` π

=..
.

2α π

π

..
.

e´iα

2n`1

n n

New rule: Supplementarity

Rule used in ZX for completeness:

α α ` π

=

2α ` π

1
2

Can be generalised to following four cases:

α

α ` π

=..
.

2α ` π
..

.

1
2n

n n
α

α ` π

=..
.

2α

..
.

1
2n`1

n n

α

´α ` π

=..
.

2α ` π π

π

..
.

- e
´iα

2n
n n

α

´α ` π

=..
.

2α π

π

..
.

e´iα

2n`1

n n

Example

Consider benchmark circuit hwb6: 7 qubits, and 105 T-gates.
After PyZX simplification: 75 T-gates.

Inputting the state |``´´´`´y and effect x`011´ 1´|,
and further simplifying gives (up to scalar):

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

This has 33 T-gates.

Example

Consider benchmark circuit hwb6: 7 qubits, and 105 T-gates.
After PyZX simplification: 75 T-gates.
Inputting the state |``´´´`´y and effect x`011´ 1´|,

and further simplifying gives (up to scalar):

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

This has 33 T-gates.

Example

Consider benchmark circuit hwb6: 7 qubits, and 105 T-gates.
After PyZX simplification: 75 T-gates.
Inputting the state |``´´´`´y and effect x`011´ 1´|,
and further simplifying gives (up to scalar):

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

This has 33 T-gates.

Example

3π
4

3π
4

π
4

π
47π

4

5π
45π

4

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

3π
4

7π
4

5π
4

5π
4

7π
4

π
4

5π
4

=

π
2

π
2

π
4

π
43π

2

5π
4π

7π
4

π
4

π
4

7π
4

π
4

5π
4

π
4

7π
4

π
4

π
4

7π
4

π
4

3π
4

5π
4

7π
4

7π
4

π
4

π
4

π
4

π
2

7π
4

5π
4

5π
4

3π
2

π
4

5π
4

π
4

π
4

π
4

π
4

π
4

π
4

Now we should apply the stabilizer decomposition to these states.

Stabilizer decompositions in ZX

π
4

= e iπ{4
π

+

π
4

= e iπ{4+
π
4 ππ

2

But what about the 6 T-gate rank 7 decomposition?

Source: Sergey Bravyi, Graeme Smith, and John A Smolin.

Trading classical and quantum computational resources (2016).

e iπ{4 π
4

π
4

π
4

π
4

π
4

π
4

=

´1`
?
2

4
1´
?
2

4 π π π π π π
+

´2i

π

π
2

π
2

π
2

π
2

π
2

π
2´2

?
2i

π
2

π
2

π
2

π
2

π
2

π
2

`2e iπ{4
-π2

`8
?

2i
π

`8
?

2i
π

Demo time

Conclusions

§ With ZX-calculus we can combine tensor contraction with
stabilizer decomposition.

§ With rewriting we can further reduce amount of non-Cliffords
in each sub-diagram.

§ Even removing just 1 extra spider in every diagram would
allow « 15% bigger circuits.

Conclusions

§ With ZX-calculus we can combine tensor contraction with
stabilizer decomposition.

§ With rewriting we can further reduce amount of non-Cliffords
in each sub-diagram.

§ Even removing just 1 extra spider in every diagram would
allow « 15% bigger circuits.

Conclusions

§ With ZX-calculus we can combine tensor contraction with
stabilizer decomposition.

§ With rewriting we can further reduce amount of non-Cliffords
in each sub-diagram.

§ Even removing just 1 extra spider in every diagram would
allow « 15% bigger circuits.

Future work

§ Investigate which groups of spiders should be replaced.

§ Find right trade-off in using more computation early on.

§ Approximate decompositions and pruning of small branches.

§ Make high-performance implementation of the algorithm.

§ Marginal probabilities possible with CPM construction. Is
there a better way?

Future work

§ Investigate which groups of spiders should be replaced.

§ Find right trade-off in using more computation early on.

§ Approximate decompositions and pruning of small branches.

§ Make high-performance implementation of the algorithm.

§ Marginal probabilities possible with CPM construction. Is
there a better way?

Future work

§ Investigate which groups of spiders should be replaced.

§ Find right trade-off in using more computation early on.

§ Approximate decompositions and pruning of small branches.

§ Make high-performance implementation of the algorithm.

§ Marginal probabilities possible with CPM construction. Is
there a better way?

Future work

§ Investigate which groups of spiders should be replaced.

§ Find right trade-off in using more computation early on.

§ Approximate decompositions and pruning of small branches.

§ Make high-performance implementation of the algorithm.

§ Marginal probabilities possible with CPM construction. Is
there a better way?

Thank you for your attention!

github.com/Quantomatic/pyzx zxcalculus.com/pyzx

