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Quantum circuit simulation

The Problem: Given quantum circuit C , and input state |ψy,
answer some question about C |ψy.

E.g. Find the probability |x0 ¨ ¨ ¨ 0|C |ψy|2.

Why do we care?

§ Verification of correctness of circuits.

§ Modelling physical systems.

§ Understand when quantum supremacy has been reached.
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Weak versus Strong simulation

Suppose we measure all qubits in computational basis at the end
of the circuit. Then we get a probability distribution

Ppx1 ¨ ¨ ¨ xnq “ |xx1 ¨ ¨ ¨ xn|C |ψy|2

Weak simulation: sample from this distribution.
This is BQP-complete.

Strong simulation: get any marginal probability of Ppx1 ¨ ¨ ¨ xnq.
This is #P-hard.
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Direct simulation

Write n-qubit state as 2n complex numbers.
Every gate in the circuit modifies this vector.

§ Naively, for n “ 50 would take « 1000TB.

§ But n « 80 has been achieved in practice by being smart.
(exploiting sparsity, limited depth of circuit, etc.)

All these methods in a sense rely on tensor contraction.
They are all exponential in number of qubits.
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Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
Clifford circuit C & |T y magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
|ψy “

řn
i λi |φiy.

3. Note: Each C |φiy can be efficiently simulated!
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Stabilizer decompositions 2

Given Clifford circuit C and input |ψy “
řn

i λi |φiy
where the |φiy are Clifford. How do we approximate C |ψy?

Two methods:

1. Monte-Carlo over the |φiy weighted by |λi |.
Polynomial in the negativity: λ “

řn
i |λi |.

2. Compute
řn

i λiC |φiy.
Polynomial in the stabilizer rank: Rp|ψyq “ n.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.
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Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.

Hence:
Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468



Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468



Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2,

and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468



Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468



Stabilizer rank

T-magic state |T y :“ |0y ` e iπ{4 |1y has rank Rp|T yq “ 2.
Hence:

Rp|T ybnq ď 2n

e.g. |T y b |T y “ |00y ` e iπ{4 |01y ` e iπ{4 |10y ` e iπ{2 |11y

But also: |T y b |T y “ p|00y ` i |11yq ` e iπ{4p|01y ` |10yq,
so actually Rp|T yb2q “ 2, and hence:

Rp|T ybnq “ Rpp|T y b |T yqn{2q ď 2n{2

Can also show that Rp|T yb6q “ 7, and hence:

Rp|T ybnq ď 2αn where α “ log2p7q{6 « 0.468



The goal:

combine tensor contraction

& stabilizer decompositions

using the ZX-calculus.



ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|
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Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

S “ π
2 T “ π

4

H “ := π
2

π
2

π
2

CNOT “ CZ “ “

Universality

Any linear map between qubits can be represented
as a ZX-diagram.
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Rules for ZX-diagrams: The ZX-calculus

β
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.

..
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.α`β

p-1qaα“
aπ
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aπ α
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aπ aπ
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aπ
α “

..
.

aπ

aπ

α

..
.“ α

..
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“

“
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α, β P r0, 2πs, a P t0, 1u



Completeness of the ZX-calculus

Theorem
ZX-diagrams representing same linear map,
can be transformed into one another
using previous rules (and some additional ones).



Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.

2. Simplify using ZX-calculus rules.

3. Replace magic states by stabilizer decomposition.

4. Repeat.

5. ...

6. Profit!
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Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)

But:

§ All rewrites now need to be scalar accurate.

§ We no longer care about circuit extraction,
so we can do more stuff!
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Scalar-accurate local complementation and pivot

˘π
2

α1 αn

...... ...
“

...
α1¯

π
2

...
αn¯

π
2

α2

...

αń 1

...

α2¯
π
2

...
αń 1¯

π
2

...

...
e˘iπ{4

?
2
pn´1qpn´2q

2

jπ
α1

“αn

βm

β1

γ1

γl

kπ

...

...

...
αn ` kπ

β1 ` pj ` k ` 1qπ

...
βm ` pj ` k ` 1qπ

γ1 ` jπα1 ` kπ
......

γl ` jπ

...

...

...

...

...

...

...

...
...

...

...

...

p´1qab
?

2
pn´1qm

?
2
pl´1qm

?
2
pn´1qpl´1q

These + variations kill all internal Clifford spiders.
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Further optimization

From previous talk:

α β..
.

..
. = α ` β..
.

..
.

α

β
α1

αn

..
.

α ` β α1

αn

..
.=

...

... ...

...

´

1?
2

¯n´1



New rule: Supplementarity

Rule used in ZX for completeness:

α α ` π

=

2α ` π

1
2

Can be generalised to following four cases:

α

α ` π

=..
.

2α ` π

..
.

1
2n

n n
α

α ` π

=..
.

2α

..
.

1
2n`1

n n

α

´α ` π

=..
.

2α ` π π

π

..
.

- e
´iα

2n
n n

α

´α ` π

=..
.

2α π

π

..
.

e´iα

2n`1

n n
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Example

Consider benchmark circuit hwb6: 7 qubits, and 105 T-gates.
After PyZX simplification: 75 T-gates.

Inputting the state |``´´´`´y and effect x`011´ 1´|,
and further simplifying gives (up to scalar):
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Now we should apply the stabilizer decomposition to these states.



Stabilizer decompositions in ZX

π
4

= e iπ{4
π

+

π
4

= e iπ{4+
π
4 ππ

2

But what about the 6 T-gate rank 7 decomposition?



Source: Sergey Bravyi, Graeme Smith, and John A Smolin.

Trading classical and quantum computational resources (2016).
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Demo time



Conclusions

§ With ZX-calculus we can combine tensor contraction with
stabilizer decomposition.

§ With rewriting we can further reduce amount of non-Cliffords
in each sub-diagram.

§ Even removing just 1 extra spider in every diagram would
allow « 15% bigger circuits.
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Future work

§ Investigate which groups of spiders should be replaced.

§ Find right trade-off in using more computation early on.

§ Approximate decompositions and pruning of small branches.

§ Make high-performance implementation of the algorithm.

§ Marginal probabilities possible with CPM construction. Is
there a better way?
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Thank you for your attention!

github.com/Quantomatic/pyzx zxcalculus.com/pyzx


