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The result in brief

The circuit extraction problem

Input: A ZX-diagram with promise it is unitary.
Output: Description of quantum circuit of same unitary.

Theorem
The circuit extraction problem is #P-hard.

Note: Strong quantum circ simulation is #P-complete
→ circ extraction at least as hard as computing properties of
diagrams directly.
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Why do we need circuit extraction?

Suppose we want to use ZX for circuit optimisation.

I First write circuit as ZX-diagram.

I Simplify diagram with favourite strategy.
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I Now need to transform diagram back into circuit.

More generally: if you want to run a ZX-diagram on a quantum
computer, it needs to be a circuit.



Why do we need circuit extraction?

Suppose we want to use ZX for circuit optimisation.

I First write circuit as ZX-diagram.

I Simplify diagram with favourite strategy.

π
2

π
2

3π
2

π
2

5π
4

π
2

π
2

π
2

π
2

3π
2

π
2

π
4 ⇒

π
2

π
4

5π
4

π
2

π
4

π
4 π

π

I Now need to transform diagram back into circuit.

More generally: if you want to run a ZX-diagram on a quantum
computer, it needs to be a circuit.



Known extraction techniques

I Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus

When diagram has gflow, can extract circuit.

I There and back again: A circuit extraction tale
When diagram has extended gflow, can extract circuit.

I Relating Measurement Patterns to Circuits via Pauli Flow
When diagram has Pauli flow, can extract circuit.

They all require promise on ‘local structure’ of the diagram.
This prevents the diagrams from becoming ‘too wild’.
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Formal definition

CircuitExtraction
Input: A ZX-diagram D with n inputs and outputs and at most k
wires and/or spiders, and a set G of unitary gates (each acting on
at most O(1) qubits).

Promise: D is proportional to a unitary.

Output: Either
(a) a poly(n, k)-size circuit C , given as a sequence of gates from G
and expressing an n-qubit unitary that is proportional to D, if such
a circuit exists;
or (b) a message no such circuit exists, if that is the case.
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Some complexity theory

I An NP-complete problem is SAT, where we ask whether a
Boolean formula has a satisfying assignment.

I #P is the ‘counting version’ of NP: I.e., output not whether
there is a solution, but how many solutions there are.

I A #P-complete problems is #SAT, where we ask for the
number of solutions of a Boolean formula.

Toda’s theorem
The polynomial hierarchy is contained in P#P.
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Main result

Theorem
#SAT Cook reduces to CircuitExtraction:
#SAT ∈ FPCircuitExtraction.

Corollary

If there is a poly-time algorithm for CircuitExtraction, then the
entire polynomial hierarchy collapses, and in particular P = NP.



Sketch of proof

I Suppose given Boolean formula f : {0, 1}n → {0, 1}.
I Construct ZX-diagram for linear map Lf which acts as

Lf |~x〉 = |f (~x)〉:

I Now note:

Lf
... =

∑
x Lx |x〉 =

∑
x |f (x)〉 = N0

2n |0〉+ N1
2n |1〉 =: a0|0〉+ a1|1〉

I Up to normalisation this state is
Yα|0〉 = cos(α2 )|0〉+ sin(α2 )|1〉
where α is determined by number of solutions to f .
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Sketch of Proof, part 2

I We use this state we prepared as the input to a controlled
operation:

Lf
...
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I So if we feed diagram (1) to CircuitExtraction, we get a
1-qubit circ equal to X (α).

I Multiply out the gates in the circ to actually calculate α.
QED.
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Why it works

I While the diagram contains poly(n) spiders, the circuit has
exactly 1 qubit.

I Furthermore, circ only has poly(n) gates.

I So can multiply out all the gates in poly-time.

I Only need to know value of α up to poly(n) bits of precision.



Relation to post-selection

Can write the diagram as post-selected circuit:

Uf

|+〉

|+〉

...

|0〉

iX

〈+|

〈+|
〈+|

...

I Note: ‘correct’ postselection prob is ≥ 1
4 independent of n.

I So: could implement the circ with high prob on real QC.

I However: adjacent possible values of α are exponentially close.

I So running on QC won’t work: need exponential samples.

Corollary

Removing post-selections from post-selected circuit which is
unitary, is #P-hard.
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Circuit Extraction with auxiliary qubits

AuxCircuitExtraction
Input: Unitary ZX-diagram.
Output: Circuit with up to logarithmic number of ancillae,
measurements and classical corrections.

Theorem
AuxCircuitExtraction is #P-hard.



Approximate Circuit Extraction

ApproxCircuitExtraction
Input: Unitary ZX-diagram D and a precision parameter ε > 0.
Output: A poly(n, k , log(1/ε))-size circuit C expressing an n-qubit
unitary which is an ε-approximation to D.

Theorem
ApproxCircuitExtraction is #P-hard.



Bypassing circuit extraction

I The motivation for extracting a circuit, is to run the diagram
on a quantum computer.

I So really, we just want to sample from the unitary diagram.

UnitaryZXSampling
Input: A ZX-diagram D with n inputs and outputs.
Promise: D is proportional to some unitary U.
Output: A sample ~x ∈ {0, 1}n from a probability distribution,
given by (or sufficiently close to) |〈~x |U|0· · · 0〉|2.

Theorem
NP randomly polynomially reduces to UnitaryZXSampling.
That is: NP ⊆ BPPUnitaryZXSampling.

Corollary

If there were a procedure to run unitary ZX-diagrams on a
quantum computer, then NP ⊆ BQP.



Bypassing circuit extraction

I The motivation for extracting a circuit, is to run the diagram
on a quantum computer.

I So really, we just want to sample from the unitary diagram.

UnitaryZXSampling
Input: A ZX-diagram D with n inputs and outputs.
Promise: D is proportional to some unitary U.
Output: A sample ~x ∈ {0, 1}n from a probability distribution,
given by (or sufficiently close to) |〈~x |U|0· · · 0〉|2.

Theorem
NP randomly polynomially reduces to UnitaryZXSampling.
That is: NP ⊆ BPPUnitaryZXSampling.

Corollary

If there were a procedure to run unitary ZX-diagrams on a
quantum computer, then NP ⊆ BQP.



Bypassing circuit extraction

I The motivation for extracting a circuit, is to run the diagram
on a quantum computer.

I So really, we just want to sample from the unitary diagram.

UnitaryZXSampling
Input: A ZX-diagram D with n inputs and outputs.
Promise: D is proportional to some unitary U.
Output: A sample ~x ∈ {0, 1}n from a probability distribution,
given by (or sufficiently close to) |〈~x |U|0· · · 0〉|2.

Theorem
NP randomly polynomially reduces to UnitaryZXSampling.
That is: NP ⊆ BPPUnitaryZXSampling.

Corollary

If there were a procedure to run unitary ZX-diagrams on a
quantum computer, then NP ⊆ BQP.



Bypassing circuit extraction

I The motivation for extracting a circuit, is to run the diagram
on a quantum computer.

I So really, we just want to sample from the unitary diagram.

UnitaryZXSampling
Input: A ZX-diagram D with n inputs and outputs.
Promise: D is proportional to some unitary U.
Output: A sample ~x ∈ {0, 1}n from a probability distribution,
given by (or sufficiently close to) |〈~x |U|0· · · 0〉|2.

Theorem
NP randomly polynomially reduces to UnitaryZXSampling.
That is: NP ⊆ BPPUnitaryZXSampling.

Corollary

If there were a procedure to run unitary ZX-diagrams on a
quantum computer, then NP ⊆ BQP.



Conclusion

I Circuit extraction is hard.

I Allowing approximate extraction or some ancillae does not
make it easier.

I In fact, any way to extract samples from a unitary
ZX-diagram is at least NP-hard.

Future work:

I What is the exact complexity of CircuitExtraction? The best

bound we have is FNPNP#P
.

I Is Circuit Extraction for deterministic measurement patterns
also hard?
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Thank you for your attention!
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