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tl:dr

» ZX-calculus is universal language for quantum computing
» Great for Clifford4+-Phases gate set, not so great for Toffoli
» ZH-calculus introduced to be great for Toffoli's

» Original ZH [QPL'18] complete for universal fragment

In this work:
» We find subset of rules complete for Toffoli+Hadamard
» We find original set of rules complete for (almost) any ring

» Along the way we find way to encode arithmetic in ZH



First some motivation for the calculus
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What about AND?
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Not true for AND:
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Fixing flexsymmetry

Can we make AND flexsymmetric?
Yes, there exists a linear map such that:

Namely:

We define:
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Universality
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Universality

Composing these generators we can represent any 27 x 2™ matrix
with entries in Z[1].

By Amy et al. (arxiv:1908.06076) this corresponds to circuits
generated by Toffoli and H® H.



Derived generators

LRV G SR
5 -



Boolean interpretation

OPY




Boolean rules #1
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Boolean rules #2




The final rule

Need one more rule:




The final rule

Need one more rule:




The rules

» X _ W

(hs) K = o><

(bay) X = .

(id) %
(hh) i
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Completeness

Theorem
These 8 rules are complete for matrices over Z[%]

Proof

Reduce each diagram to unique normal form.
Need a couple of ingredients:

> Labelled H-boxes

> Annotated !-boxes

» The normal form

> Arithmetic
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Labelled H-boxes

We represent state (1,a)” by a labelled H-box:

(T TS, mT S

Extend to higher arity:
o E

Can build higher numbers:

e



Integers

Natural numbers:

Negation:
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Standard !-boxes:
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I-boxes
Standard !-boxes:
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Annotated !-boxes:
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I-boxes

Standard !-boxes:

R U N ¥ R CY S

Annotated !-boxes:

b € B
| | |
= [300]_[301] [a10]
7\
3 o G

A useful additional definition:



Normal form

Schur product:




Normal form

Schur product:

Normal form:

—  fa s D
k oHo 01 - \1

HHH

We say it is reduced when k is minimal
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How to reduce to normal form

» Show each generator can be reduced to normal form
» Show tensor products of nforms can be reduced to nform

» Show that any wirings between nforms are reducible

To do this we need to be able to do arithmetic on H-box labels



Arithmetic

Addition: oo =
(a]



Arithmetic

Addition:

Multiplication:
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Arithmetic

Addition:

Multiplication:

Average:
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Arithmetic

Addition:

Multiplication:

Average:

Introduction:




Summary

(@ % - ‘
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are complete and universal for matrices over Z[5].
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ZH over arbitrary rings

Let's promote labelled H-boxes to actual generators.

Pick commutative ring R where 2 := 1 4 1 has an inverse %

For any r € R define
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The resulting ZHg-diagrams are universal for matrices over R.



Rules for ZHg
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Completeness for rings

Theorem
Let R be a commutative ring where 2 has an inverse.
Then this rule set is complete for matrices over R.



Completeness for rings

Theorem
Let R be a commutative ring where 2 has an inverse.
Then this rule set is complete for matrices over R.

But what if 2 does not have an inverse, e.g. if R = Z7?
Problem, because:

fol =



For general rings
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New rules:




For general rings

Don’t have a & . So need other set of generators:

New rules:

New meta-rule:
For any diagrams D; and Dy: oD1 = oDy, = Dy =D,

Note: only sound when 2 is not a zero divisor.



General completeness

Theorem
Let R be a commutative ring R where 2 is not a zero divisor. Then
the rules + meta-rule make ZHr complete for matrices over R.
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Conclusion

» New small complete axiomatisation of Tof+Had circuits
» Clear relation to Boolean circuits

» Straightforwardly extended to (almost) arbitrary rings

Thank you for your attention

Backens, Kissinger, Miller-Bakewell, vdW, Wolffs 2021,
arXiv:2103.06610.
Completeness of the ZH-calculus
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