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Announcement: Quantum Pubquiz

§ What: A quantum Pubquiz!

§ When: Thursday 20:30CEST

§ Where: Gathertown pub

No need to register, just show up :)



The problem

§ Most quantum circuit synthesis algorithms use 2-qubit gates
(i.e. CNOTs)

§ This is fine for many hardware architectures...
...but not all.

§ Ion trap quantum computers use Mølmer-Sørensen interaction
that targets many qubits.

§ Can we use this to our advantage somehow?

§ As it turns out: yes!
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Mølmer-Sørensen interaction

§ For Pauli string ~P write ~Ppαq :“ expp´i α2
~Pq.

§ ‘Local’ MS gate acting on qubits i and j implements XXijpαq:

in ZX-calculus: XXijpαq “ α

§ Global MS gate (GMS) acting on set of qubits S is

GMSSpαq “
ź

iăjPS

XXijpαq.

§ If S can be arbitrary, we say the interaction is targeted

§ If S is necessarily all the qubits, it is untargeted.
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Some observations

§ Observation 1: Conjugating GMS gate by Hadamards gives
diagonal gate

ś

iăjPS ZZijpαq. This is just a phase polynomial.

§ Observation 2: For α “ π
2 the GMS gate is Clifford.

§ Observation 3: For α “ π
2 the GMS gate is within local

Cliffords of applying CZ gates everywhere:

π
2 =

π
2

π
2

=
S

S

§ Observation 4: A global CZ gate (GCZ) can be implemented
using a single GMS gate + local Cliffords.
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Compiling for targeted GMS gates

Input: circuit of Clifford gates and non-Clifford Z-phase gates.
Output: circuit of single-qubit gates and targeted GMS gates.

Algorithm:

1. Take first occurrence of non-Clifford gate Z pαq.
Push it all the way to the beginning to get ~Ppαq.

Zi pαqC “ C expp´i
α

2
C :ZiC q “ C expp´i

α

2
~Pq.

2. Conjugate ~Ppαq by Cliffords to reduce to phase gadget ~P 1pαq
where each P 1

i “ I or P 1
i “ Z .

3. Implement ~P 1pαq using GCZ gate up to ‘Clifford garbage’...
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Phase gadget CNOT ladder

` Z pαq `` `

ZZIIZ pαq =



Phase gadget using GCZ gate

` Z pαq `` `

=
GCZ1,2,5

H H Z pαq Z pαqH H

=

``

=

Z pαq` `



Compiling for targeted GMS gates contd.

1. Take first occurrence of non-Clifford gate Z pαq.
Push it all the way to the left to get ~Ppαq.

2. Conjugate it by Cliffords to reduce to phase polynomial ~P 1pαq
where each P 1

i “ I or P 1
i “ Z .

3. Implement ~P 1pαq using GCZ gate up to ‘Clifford garbage’.

4. Push next non-Clifford gate to frontier, repeat previous steps.
If all non-Clifford gates processed go to next step.

5. Synthesise remaining Clifford circuit.
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Clifford circuits with targeted GMS gates

§ Reduce the Clifford circuit to a normal form, i.e.
Gottesman-Aaronson: C-P-C-P-H-P-C-P-C.

§ Each CNOT ‘fan-out’ gate requires 2 GMS gates.

GCZ

H H

`

`

`

¨
¨
¨

GCZ

¨
¨
¨

¨
¨
¨

¨
¨
¨

=

Hence, upper-triangular Boolean matrix requires 2n ´ 3 GMS
gates .

§ The above normal form then requires 12n ´ 18 GMS gates.

§ However: using ‘GSLC’ normal form H-S-CZ-CNOT-H-CZ-S-H
we get 6n ´ 8.



Clifford circuits with targeted GMS gates

§ Reduce the Clifford circuit to a normal form, i.e.
Gottesman-Aaronson: C-P-C-P-H-P-C-P-C.

§ Each CNOT ‘fan-out’ gate requires 2 GMS gates.

GCZ

H H

`

`

`

¨
¨
¨

GCZ

¨
¨
¨

¨
¨
¨

¨
¨
¨

=

Hence, upper-triangular Boolean matrix requires 2n ´ 3 GMS
gates .

§ The above normal form then requires 12n ´ 18 GMS gates.

§ However: using ‘GSLC’ normal form H-S-CZ-CNOT-H-CZ-S-H
we get 6n ´ 8.



Clifford circuits with targeted GMS gates

§ Reduce the Clifford circuit to a normal form, i.e.
Gottesman-Aaronson: C-P-C-P-H-P-C-P-C.

§ Each CNOT ‘fan-out’ gate requires 2 GMS gates.

GCZ

H H

`

`

`

¨
¨
¨

GCZ

¨
¨
¨

¨
¨
¨

¨
¨
¨

=

Hence, upper-triangular Boolean matrix requires 2n ´ 3 GMS
gates

.

§ The above normal form then requires 12n ´ 18 GMS gates.

§ However: using ‘GSLC’ normal form H-S-CZ-CNOT-H-CZ-S-H
we get 6n ´ 8.



Clifford circuits with targeted GMS gates

§ Reduce the Clifford circuit to a normal form, i.e.
Gottesman-Aaronson: C-P-C-P-H-P-C-P-C.

§ Each CNOT ‘fan-out’ gate requires 2 GMS gates.

GCZ

H H

`

`

`

¨
¨
¨

GCZ

¨
¨
¨

¨
¨
¨

¨
¨
¨

=

Hence, upper-triangular Boolean matrix requires 2n ´ 3 GMS
gates .

§ The above normal form then requires 12n ´ 18 GMS gates.

§ However: using ‘GSLC’ normal form H-S-CZ-CNOT-H-CZ-S-H
we get 6n ´ 8.



Clifford circuits with targeted GMS gates

§ Reduce the Clifford circuit to a normal form, i.e.
Gottesman-Aaronson: C-P-C-P-H-P-C-P-C.

§ Each CNOT ‘fan-out’ gate requires 2 GMS gates.

GCZ

H H

`

`

`

¨
¨
¨

GCZ

¨
¨
¨

¨
¨
¨

¨
¨
¨

=

Hence, upper-triangular Boolean matrix requires 2n ´ 3 GMS
gates .

§ The above normal form then requires 12n ´ 18 GMS gates.

§ However: using ‘GSLC’ normal form H-S-CZ-CNOT-H-CZ-S-H
we get 6n ´ 8.



Compiling for targeted GMS gates

Theorem
An n-qubit circuit consisting of

§ Clifford gates

§ and N non-Clifford Z-phase gates

can be implemented using single qubit unitaries and at most
N ` 6n ´ 8 GMS gates.



Now to use untargeted GMS gates instead



Phase gadget identities

α

ππ

´α=

α

ππ

α=
ππ

α β = α ` β

0 =



From global to local

ùGZZpαq

XX

GZZpαq

π

α

α

α

π

α

α

α

=
α

´α

´α α

α

α

=
2α

0

0

=
2α GZZp2αq

ù

=
α ` α

´α + α

´α + α

Identity from (Maslov & Nam, 2018)
To go from global on n qubits, to ‘local’ on k qubits requires 2n´k GMS gates.



From global to more local

ùGZZpαq
XX

GZZpαq
π

α

α

α

π

XX π π

α

α

α

α

α

α

α

α

α

=

α

´α

´α

α

´α

´α

α

α

α

α

α

α

=

2α

0

0

2α

0

0

ù

GZZp2αq

GZZp2αq



From 8-global to 2-local

α
X
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X

X

α
X

X

X

X

α
X

X

X
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X
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X

X
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X

X
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X
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α

X

X

X

X
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X

X

X

α
X
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X

X

α
X

X

X

X

X
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X

X

X

X

X
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=

2α 2α
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X

X =

4α

4α

X

X

X
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4α
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4α

4α

4α

=

8α

8α

Using the other method for the same result would require 128 GMS gates.



Cliffords using untargeted GMS gates

Proposition

An n-qubit CNOT circuit of depth d can be synthesised with local
Cliffords and ă dn untargeted n-qubit GZZp π2n q gates.

Asymptotically optimal depth of ancilla-free CNOT circuit on n
qubits is Opn{ logpnqq, hence:

Theorem
An n-qubit Clifford circuit can be synthesised using local Clifford
gates and Opn2{ logpnqq untargeted n-qubit GZZp π2n q gates.

Note: this matches Opn2{ logpnqq CNOT count for implementing an
n-qubit Clifford.
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Phase gadgets using untargeted GMS gates

` Z pαq `` `

=
GZZ pπ4 q

H H Z pαq

``

GZZ pπ4 q

XX

GZZ1,2,5p
π
2 q

H H Z pαq

S

S

S

S

S

S

GCZ1,2,5

H H Z pαq

= =

X X
GZZpπ2 q

GZZpπ2 q GZZpπ2 q



Circuits to untargeted GMS gates

Theorem
An n-qubit circuit of

§ Clifford gates

§ and N non-Clifford Z-phase gates

can be synthesised using single qubit unitaries and
2N ` Opn2{ logpnqq untargeted GMS gates.



Conclusion

Results for n-qubit circuit with N non-Clifford phases.

Targeted GMS gates:

§ Clifford: 6n ´ 8

§ Arbitrary: N ` 6n ´ 8

Untargeted GMS gates:

§ Clifford: Opn2{ logpnqq

§ Arbitrary: 2N ` Opn2{ logpnqq

Future questions:

§ Are these bounds tight?

§ Is there a benefit to allow α to vary?
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Thank you for your attention

vdW 2020, arXiv:2012.09061
Constructing quantum circuits with global gates

Maslov & Nam 2017, arXiv:1707.06356
Use of global interactions in efficient quantum circuit constructions

vdW 2020, arXiv:2012.13966
ZX-calculus for the working quantum computer scientist
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