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Announcement: Quantum Pubquiz

» What: A quantum Pubquiz!
» When: Thursday 20:30CEST
» Where: Gathertown pub

No need to register, just show up :)
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» lon trap quantum computers use Mglmer-Sgrensen interaction
that targets many qubits.

» Can we use this to our advantage somehow?
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As it turns out: yes!
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Mglmer-Sgrensen interaction
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For Pauli string P write P(«) 1= exp(—i§ P).
‘Local’ MS gate acting on qubits i and j implements XXj;():

v

®
in ZX-calculus: XXjj(o) = (@0
O

v

Global MS gate (GMS) acting on set of qubits S is

GMSs(a) = [] XXj(a

i<jeS

v

If S can be arbitrary, we say the interaction is targeted

v

If S is necessarily all the qubits, it is untargeted.
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Some observations

v

Observation 1: Conjugating GMS gate by Hadamards gives
diagonal gate [ [;_;cs ZZjj(«). This is just a phase polynomial.
the GMS gate is Clifford.

Observation 3: For a = Z the GMS gate is within local
Cliffords of applying CZ gates everywhere:

® —{s}
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» Observation 4: A global CZ gate (GCZ) can be implemented
using a single GMS gate + local Cliffords.

v

Observation 2: For a =

v
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Phase gadget CNOT ladder

ZZIZ(o) =

3




Phase gadget using GCZ gate

GCZ155

3
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Compiling for targeted GMS gates contd.

1. Take first occurrence of non-Clifford gate Z(«).
Push it all the way to the left to get P(«).

2. Conjugate it by Cliffords to reduce to phase polynomial ﬁ’(oz)
where each P/ =/ or P/ = Z.

3. Implement ﬁ’(a) using GCZ gate up to ‘Clifford garbage’.

4. Push next non-Clifford gate to frontier, repeat previous steps.
If all non-Clifford gates processed go to next step.

5. Synthesise remaining Clifford circuit.
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Clifford circuits with targeted GMS gates

» Reduce the Clifford circuit to a normal form, i.e.
Gottesman-Aaronson: C-P-C-P-H-P-C-P-C.
» Each CNOT ‘fan-out’ gate requires 2 GMS gates.

= GCzZ

GCzZ
— '

Hence, upper-triangular Boolean matrix requires 2n — 3 GMS

gates .
» The above normal form then requires 12n — 18 GMS gates.

» However: using ‘GSLC' normal form H-S-CZ-CNOT-H-CZ-S-H
we get 6n — 8.



Compiling for targeted GMS gates

Theorem
An n-qubit circuit consisting of

» Clifford gates
» and N non-Clifford Z-phase gates

can be implemented using single qubit unitaries and at most
N + 6n — 8 GMS gates.



Now to use untargeted GMS gates instead



Phase gadget identities
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From global to local
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Identity from (Maslov & Nam, 2018)
To go from global on n qubits, to ‘local’ on k qubits requires 2"~% GMS gates.
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From global to more local
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From 8-global to 2-local
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Using the other method for the same result would require 128 GMS gates.
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Cliffords using untargeted GMS gates

Proposition

An n-qubit CNOT circuit of depth d can be synthesised with local
Cliffords and < dn untargeted n-qubit GZZ() gates.

Asymptotically optimal depth of ancilla-free CNOT circuit on n
qubits is O(n/log(n)), hence:

Theorem
An n-qubit Clifford circuit can be synthesised using local Clifford
gates and O(n?/log(n)) untargeted n-qubit GZZ(4%) gates.

Note: this matches O(n?/log(n)) CNOT count for implementing an
n-qubit Clifford.



Phase gadgets using untargeted GMS gates
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Circuits to untargeted GMS gates

Theorem
An n-qubit circuit of

» Clifford gates
» and N non-Clifford Z-phase gates

can be synthesised using single qubit unitaries and
2N + O(n?/log(n)) untargeted GMS gates.
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Conclusion

Results for n-qubit circuit with N non-Clifford phases.

Targeted GMS gates:
» Clifford: 6n—8
> Arbitrary: N +6n—38

Untargeted GMS gates:
» Clifford: O(n?/log(n))
> Arbitrary: 2N + O(n?/log(n))

Future questions:
> Are these bounds tight?

» |s there a benefit to allow « to vary?



Thank you for your attention

vdW 2020, arXiv:2012.09061
Constructing quantum circuits with global gates

Maslov & Nam 2017, arXiv:1707.06356
Use of global interactions in efficient quantum circuit constructions

vdW 2020, arXiv:2012.13966
ZX-calculus for the working quantum computer scientist
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