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Aleks Kissinger Oxford University
John van de Wetering Radboud University Nijmegen

April 8, 2020



Quantum circuit optimisation

§ We want to use quantum resources as efficiently as possible.

§ So quantum circuits should contain as few gates as possible.
§ Several important metrics:

§ Gate-depth
§ 2-qubit gate count
§ Number of T gates: T-count [ T = RZ p
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Circuit diagrams
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Circuit identities
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More circuit equalities
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Things get messy
because circuits are very rigid

Enter ZX-diagrams
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ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.
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Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

S “ π
2 T “ π

4

H “ := π
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CNOT “ CZ “ “

Universality

Any linear map between qubits can be represented
as a ZX-diagram.
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Rules for ZX-diagrams: The ZX-calculus
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Completeness of the ZX-calculus

Theorem (Vilmart 2018)

If two ZX-diagrams represent the same linear map,
then they can be transformed into one another
using the previous rules (and one additional one).

So instead of dozens of circuit equalities,
we just need a few simple rules.
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Optimisation using ZX-diagrams

§ Write circuit as ZX-diagram.

§ Turn it into graph-like ZX-diagram.

§ Simplify the diagram.

§ Extract a circuit from the diagram.
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PyZX

§ PyZX is an open-source Python library.

§ https://github.com/Quantomatic/pyzx

§ It allows easy manipulation of large ZX-diagrams.

https://github.com/Quantomatic/pyzx


Graph-like diagrams
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Now we are ready for simplification.
The game: Remove as many interior vertices as possible.
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The tools: Local complementation and pivoting
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Example

Example result after simplification:
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Problem: does not look a circuit.
Solution: all rewrites preserve gflow.

§ Duncan, Perdrix, Kissinger, vdW (2019). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus.

§ Backens, Miller-Bakewell, de Felice, Lobski, vdW (2020).
There and back again: A circuit extraction tale.
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Clifford simplification

Clifford circuits are reduced to a pseudo-normal form:
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Clifford normal form
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§ Extracts to circuit with 8 layers:

§ H - S - CZ - CNOT - H - CZ - S - H

§ Asymptotically optimal number of free parameters, like normal
form of [Maslov & Roetteler 2019].

§ But additionally, linear nearest neighbour depth of 9n ´ 2, a
new record (Recently matched by [Bravyi & Maslov 2020]).
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Non-Clifford optimisation

Additional rules for phase gadgets:
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Kissinger, vdW 2019: Reducing T-count with the ZX-calculus
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T-count optimisation

§ At time of publishing, our method improved upon previous best
T-counts for 6/36 benchmark circuits — in one case by 50%.

§ Combining with TODD [Heyfron & Campbell 2018] we
improved T-counts for 20/36 circuits.

§ Note: [Zhang & Chen 2019] use a different method that
achieves nearly identical T-counts.
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CNOT optimisation

§ Circuit extraction resynthesises two-qubit gates.

§ Sometimes this is beneficial, but sometimes it is not.

§ Can be circumvented using phase teleportation
[Kissinger & vdW 2019].

§ Improves on previous best for quantum chemistry circuits of
[Cowtan et al. 2019].
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Conclusion

Using the ZX-calculus we found new techniques to improve depth,
two-qubit gate count and T-count of realistic benchmark circuits.

Future work:

§ Allow routing for restricted architectures.

§ Improve extraction to reduce CNOT count.

§ Find ways to incorporate ancillae.
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Thank you for your attention
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