
PyZX:
Large Scale Automated Diagrammatic Reasoning

Aleks Kissinger

aleks@cs.ru.nl

John van de Wetering

john@vdwetering.name

Institute for Computing and Information Sciences
Radboud University Nijmegen

June 10, 2019

PyZX

§ Open source Python library

§ github.com/Quantomatic/pyzx

§ zxcalculus.com/pyzx

§ With PyZX you can manipulate large ZX-diagrams
§ It can be used for:

§ Quantum circuit optimisation
§ Quantum circuit validation
§ ...

§ Why would we use ZX-diagrams for these things?

PyZX

§ Open source Python library

§ github.com/Quantomatic/pyzx

§ zxcalculus.com/pyzx

§ With PyZX you can manipulate large ZX-diagrams

§ It can be used for:
§ Quantum circuit optimisation
§ Quantum circuit validation
§ ...

§ Why would we use ZX-diagrams for these things?

PyZX

§ Open source Python library

§ github.com/Quantomatic/pyzx

§ zxcalculus.com/pyzx

§ With PyZX you can manipulate large ZX-diagrams
§ It can be used for:

§ Quantum circuit optimisation
§ Quantum circuit validation
§ ...

§ Why would we use ZX-diagrams for these things?

PyZX

§ Open source Python library

§ github.com/Quantomatic/pyzx

§ zxcalculus.com/pyzx

§ With PyZX you can manipulate large ZX-diagrams
§ It can be used for:

§ Quantum circuit optimisation
§ Quantum circuit validation
§ ...

§ Why would we use ZX-diagrams for these things?

PyZX

§ Open source Python library

§ github.com/Quantomatic/pyzx

§ zxcalculus.com/pyzx

§ With PyZX you can manipulate large ZX-diagrams
§ It can be used for:

§ Quantum circuit optimisation
§ Quantum circuit validation
§ ...

§ Why would we use ZX-diagrams for these things?

Circuit diagrams

NOT = + CNOT =
+

An example quantum circuit:

T

`

`

H

`

S

S

Circuit identities

+ +
=

H H =

T T = S

T: T =

Gate commutation

=

++ + +

T
=

+

T

+

T
=

+ +T T+ +T

More circuit equalities

And more circuit equalities

And even more circuit equalities

Things get messy
because circuits are very rigid

Enter ZX-diagrams

Things get messy
because circuits are very rigid

Enter ZX-diagrams

ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

Spiders can be wired in any way:

α

π
2

3π
2

β

π

0

ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

Spiders can be wired in any way:

α

π
2

3π
2

β

π

0

ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0y x0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨+y x+ ¨ ¨ ¨+|
`e iα |1 ¨ ¨ ¨ 1y x1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -y x- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

Spiders can be wired in any way:

α

π
2

3π
2

β

π

0

Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

S “ π
2 T “ π

4

H “ := π
2

π
2

π
2

CNOT “ CZ “ “

Universality

Any linear map between qubits can be represented
as a ZX-diagram.

Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

S “ π
2 T “ π

4

H “ := π
2

π
2

π
2

CNOT “ CZ “ “

Universality

Any linear map between qubits can be represented
as a ZX-diagram.

Rules for ZX-diagrams: The ZX-calculus

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

p-1qaα“
aπ

aπ

aπ α

..
.

..
.

aπ aπ

..
.

aπ
α “

..
.

aπ

aπ

α

..
.“ α

..
.

“

“

“

α, β P r0, 2πs, a P t0, 1u

Completeness of the ZX-calculus

Theorem
If two ZX-diagrams represent the same linear map,
then they can be transformed into one another
using the previous rules (and some additional ones).

So instead of dozens of circuit equalities,
we just need a few simple rules.

Completeness of the ZX-calculus

Theorem
If two ZX-diagrams represent the same linear map,
then they can be transformed into one another
using the previous rules (and some additional ones).

So instead of dozens of circuit equalities,
we just need a few simple rules.

Architecture of PyZX

Two main datastructures in PyZX: Circuits and Graphs.

Circuits are just lists of gates.

A Graph represents a ZX-diagram:

§ Three types of vertices: boundary, X and Z.

§ Phases are stored as rational fractions of π.

§ Two types of edges: regular and Hadamard:

:“

§ It is undirected and simple.

Architecture of PyZX

Two main datastructures in PyZX: Circuits and Graphs.

Circuits are just lists of gates.

A Graph represents a ZX-diagram:

§ Three types of vertices: boundary, X and Z.

§ Phases are stored as rational fractions of π.

§ Two types of edges: regular and Hadamard:

:“

§ It is undirected and simple.

Architecture of PyZX

Two main datastructures in PyZX: Circuits and Graphs.

Circuits are just lists of gates.

A Graph represents a ZX-diagram:

§ Three types of vertices: boundary, X and Z.

§ Phases are stored as rational fractions of π.

§ Two types of edges: regular and Hadamard:

:“

§ It is undirected and simple.

Architecture of PyZX

Two main datastructures in PyZX: Circuits and Graphs.

Circuits are just lists of gates.

A Graph represents a ZX-diagram:

§ Three types of vertices: boundary, X and Z.

§ Phases are stored as rational fractions of π.

§ Two types of edges: regular and Hadamard:

:“

§ It is undirected and simple.

Architecture of PyZX

Two main datastructures in PyZX: Circuits and Graphs.

Circuits are just lists of gates.

A Graph represents a ZX-diagram:

§ Three types of vertices: boundary, X and Z.

§ Phases are stored as rational fractions of π.

§ Two types of edges: regular and Hadamard:

:“

§ It is undirected and simple.

Dealing with parallel edges

= π..
.

..
.

..
.

..
.

=..
.

..
.

..
.

..
.

=..
.

..
.

..
.

..
.

= π..
.

..
.

..
.

..
.

=..
.

..
.

..
.

..
.

=..
.

..
.

..
.

..
. =..
.

..
.

..
.

..
.

=..
.

..
.

= π..
.

..
.

Rewrite engine

Hierarchy of rewriting:

§ First level: parallel matcher and rewriter.

§ Second: basic simplifiers recursively apply such rewrites.

§ Third: these are combined for a more powerful effect.

Important: simplifiers should be terminating.

Rewrite engine

Hierarchy of rewriting:

§ First level: parallel matcher and rewriter.

§ Second: basic simplifiers recursively apply such rewrites.

§ Third: these are combined for a more powerful effect.

Important: simplifiers should be terminating.

Rewrite engine

Hierarchy of rewriting:

§ First level: parallel matcher and rewriter.

§ Second: basic simplifiers recursively apply such rewrites.

§ Third: these are combined for a more powerful effect.

Important: simplifiers should be terminating.

Rewrite engine

Hierarchy of rewriting:

§ First level: parallel matcher and rewriter.

§ Second: basic simplifiers recursively apply such rewrites.

§ Third: these are combined for a more powerful effect.

Important: simplifiers should be terminating.

Optimization using ZX-diagrams

Duncan, Kissinger, Perdrix, vdW 2019, arXiv:1902.03178
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus

Kissinger, vdW 2019, arXiv:1903.10477
Reducing T-count with the ZX-calculus

Summary:

§ Write circuit as ZX-diagram.

§ Simplify the diagram (in a smart way).

§ Extract a circuit from the diagram.

Goal: Minimize amount of T gates in circuit.

Optimization using ZX-diagrams

Duncan, Kissinger, Perdrix, vdW 2019, arXiv:1902.03178
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus

Kissinger, vdW 2019, arXiv:1903.10477
Reducing T-count with the ZX-calculus

Summary:

§ Write circuit as ZX-diagram.

§ Simplify the diagram (in a smart way).

§ Extract a circuit from the diagram.

Goal: Minimize amount of T gates in circuit.

Optimization using ZX-diagrams

Duncan, Kissinger, Perdrix, vdW 2019, arXiv:1902.03178
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus

Kissinger, vdW 2019, arXiv:1903.10477
Reducing T-count with the ZX-calculus

Summary:

§ Write circuit as ZX-diagram.

§ Simplify the diagram (in a smart way).

§ Extract a circuit from the diagram.

Goal: Minimize amount of T gates in circuit.

Optimization using ZX-diagrams

Duncan, Kissinger, Perdrix, vdW 2019, arXiv:1902.03178
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus

Kissinger, vdW 2019, arXiv:1903.10477
Reducing T-count with the ZX-calculus

Summary:

§ Write circuit as ZX-diagram.

§ Simplify the diagram (in a smart way).

§ Extract a circuit from the diagram.

Goal: Minimize amount of T gates in circuit.

Optimization using ZX-diagrams

Duncan, Kissinger, Perdrix, vdW 2019, arXiv:1902.03178
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus

Kissinger, vdW 2019, arXiv:1903.10477
Reducing T-count with the ZX-calculus

Summary:

§ Write circuit as ZX-diagram.

§ Simplify the diagram (in a smart way).

§ Extract a circuit from the diagram.

Goal: Minimize amount of T gates in circuit.

Demonstration time

Circuit n T Best Method PyZX
PyZX
+TODD

adder8 24 399 213 RMm 173 167
Adder8 23 266 56 NRSCM 56 56
Adder16 47 602 120 NRSCM 120 120
Adder32 95 1274 248 NRSCM 248 248
Adder64 191 2618 504 NRSCM 504 504
csla-mux3 15 70 58 RMr 62 45
csum-mux9 30 196 76 RMr 84 72
cycle173 35 4739 1944 RMm 1797 1797
gf(24)-mult 12 112 56 TODD 68 52
gf(25)-mult 15 175 90 TODD 115 86
gf(26)-mult 18 252 132 TODD 150 122
gf(27)-mult 21 343 185 TODD 217 173
gf(28)-mult 24 448 216 TODD 264 214
ham15-low 17 161 97 Tpar 97 97
ham15-med 17 574 230 Tpar 212 212
ham15-high 20 2457 1019 Tpar 1019 1013
hwb6 7 105 75 Tpar 75 72
hwb8 12 5887 3531 RMm&r 3517 3501
mod-mult-55 9 49 28 TODD 35 20
mod-red-21 11 119 73 Tpar 73 73
mod54 5 28 16 Tpar 8 7
nth-prime6 9 567 400 RMm&r 279 279
nth-prime8 12 6671 4045 RMm&r 4047 3958
qcla-adder10 36 589 162 Tpar 162 158
qcla-com7 24 203 94 RMm 95 91
qcla-mod7 26 413 237 NRSCM 237 216
rc-adder6 14 77 47 RMm&r 47 47
vbe-adder3 10 70 24 Tpar 24 24

Validation

Problem: How do we know our optimized circuits are correct?

§ Direct tensor calculation (using NumPy)

§ Use the rewrite engine!

Using the latter, correctness was verified for all our circuits.

Validation

Problem: How do we know our optimized circuits are correct?

§ Direct tensor calculation (using NumPy)

§ Use the rewrite engine!

Using the latter, correctness was verified for all our circuits.

Validation

Problem: How do we know our optimized circuits are correct?

§ Direct tensor calculation (using NumPy)

§ Use the rewrite engine!

Using the latter, correctness was verified for all our circuits.

Validation

Problem: How do we know our optimized circuits are correct?

§ Direct tensor calculation (using NumPy)

§ Use the rewrite engine!

Using the latter, correctness was verified for all our circuits.

Current & Future work

§ Qubit routing for restricted topologies
cf. Arianne Meijer-van de Griend’s talk Thursday!

§ ZH-diagrammatic rewriting to reason about Toffoli circuits.

§ Quantum circuit simulation with ZX-diagrams.

Interesting challenges:

§ Optimization using auxiliary qubits

§ Compiling directly to lattice surgery procedure
(cf. previous talk)

Current & Future work

§ Qubit routing for restricted topologies
cf. Arianne Meijer-van de Griend’s talk Thursday!

§ ZH-diagrammatic rewriting to reason about Toffoli circuits.

§ Quantum circuit simulation with ZX-diagrams.

Interesting challenges:

§ Optimization using auxiliary qubits

§ Compiling directly to lattice surgery procedure
(cf. previous talk)

Current & Future work

§ Qubit routing for restricted topologies
cf. Arianne Meijer-van de Griend’s talk Thursday!

§ ZH-diagrammatic rewriting to reason about Toffoli circuits.

§ Quantum circuit simulation with ZX-diagrams.

Interesting challenges:

§ Optimization using auxiliary qubits

§ Compiling directly to lattice surgery procedure
(cf. previous talk)

Current & Future work

§ Qubit routing for restricted topologies
cf. Arianne Meijer-van de Griend’s talk Thursday!

§ ZH-diagrammatic rewriting to reason about Toffoli circuits.

§ Quantum circuit simulation with ZX-diagrams.

Interesting challenges:

§ Optimization using auxiliary qubits

§ Compiling directly to lattice surgery procedure
(cf. previous talk)

Current & Future work

§ Qubit routing for restricted topologies
cf. Arianne Meijer-van de Griend’s talk Thursday!

§ ZH-diagrammatic rewriting to reason about Toffoli circuits.

§ Quantum circuit simulation with ZX-diagrams.

Interesting challenges:

§ Optimization using auxiliary qubits

§ Compiling directly to lattice surgery procedure
(cf. previous talk)

Thank you for your attention!

github.com/Quantomatic/pyzx zxcalculus.com/pyzx

