# The algebraic structure of quantum effects 

John van de Wetering<br>Radboud University Nijmegen<br>Oxford University

July 14, 2021

## In this talk

- Hilbert spaces and quantum logic.
- From orthomodular lattices to effect algebras.
- Some cool things you can do with effect algebras.


## Hilbert spaces and quantum logic

- Quantum system is modelled by complex Hilbert space $\mathcal{H}$.
- Propositions modelled by closed subspaces.
- Equivalently: positive idempotent operators $P: \mathcal{H} \rightarrow \mathcal{H}$.
- What is the structure of the set of projections?


## Orthomodular lattices

- Projections ordered by $P \leqslant Q \Longleftrightarrow P Q=P$.
- Minimal element 0 , maximal element $I$.


## Orthomodular lattices

- Projections ordered by $P \leqslant Q \Longleftrightarrow P Q=P$.
- Minimal element 0 , maximal element $I$.
- It is in fact a complete lattice.


## Orthomodular lattices

- Projections ordered by $P \leqslant Q \Longleftrightarrow P Q=P$.
- Minimal element 0 , maximal element $I$.
- It is in fact a complete lattice.
- Negation: $P^{\perp}:=I-P$.
- Ortholattice: $(P \wedge Q)^{\perp}=P^{\perp} \vee Q^{\perp}$.


## Orthomodular lattices

- Projections ordered by $P \leqslant Q \Longleftrightarrow P Q=P$.
- Minimal element 0 , maximal element $I$.
- It is in fact a complete lattice.
- Negation: $P^{\perp}:=I-P$.
- Ortholattice: $(P \wedge Q)^{\perp}=P^{\perp} \vee Q^{\perp}$.
- Orthomodularity: $P \leqslant Q \Longrightarrow P \vee\left(P^{\perp} \wedge Q\right)=Q$.


## Orthomodular lattices

- Projections ordered by $P \leqslant Q \Longleftrightarrow P Q=P$.
- Minimal element 0 , maximal element $I$.
- It is in fact a complete lattice.
- Negation: $P^{\perp}:=I-P$.
- Ortholattice: $(P \wedge Q)^{\perp}=P^{\perp} \vee Q^{\perp}$.
- Orthomodularity: $P \leqslant Q \Longrightarrow P \vee\left(P^{\perp} \wedge Q\right)=Q$.

This is the 'classical' description of quantum logic. But what if we want to allow fuzziness?

## Effect algebras

The effects of a Hilbert space are $A: \mathcal{H} \rightarrow \mathcal{H}$ with $0 \leqslant A \leqslant I$. These model generic (noisy) measurements of a quantum system.

## Effect algebras

The effects of a Hilbert space are $A: \mathcal{H} \rightarrow \mathcal{H}$ with $0 \leqslant A \leqslant I$. These model generic (noisy) measurements of a quantum system.

Definition
An effect algebra ( $E, \otimes, 0,1$ ) has

- partial commutative associative $\mathbb{Q}$,
- with $a \otimes 0=a$,
- and $\forall a$ unique $a^{\perp}$ with $a \oslash a^{\perp}=1$,
- such that $a \perp 1$ implies $a=0$.


## Effect algebras

The effects of a Hilbert space are $A: \mathcal{H} \rightarrow \mathcal{H}$ with $0 \leqslant A \leqslant 1$. These model generic (noisy) measurements of a quantum system.
Definition
An effect algebra $(E, \otimes, 0,1)$ has

- partial commutative associative $\otimes$,
- with $a \otimes 0=a$,
- and $\forall a$ unique $a^{\perp}$ with $a \otimes a^{\perp}=1$,
- such that $a \perp 1$ implies $a=0$.


## Examples

- $[0,1]$ with $a^{\perp}:=1-a$.
- An orthomodular lattice: addition defined when $a \wedge b=0$ and then $a \otimes b:=a \vee b$.
- $\operatorname{Cstar}(\mathbb{C}, \mathfrak{A}) \cong[0,1]_{\mathfrak{A}}$ with $a^{\perp}:=1-a$.


## Effect algebras categorically

- Let BPos be category of bounded posets (which have 0 and 1 ).
- Let OMP be category of orthomodular posets.


## Effect algebras categorically

- Let BPos be category of bounded posets (which have 0 and 1 ).
- Let OMP be category of orthomodular posets.
- Forgetful functor OMP $\rightarrow$ BPos has left adjoint, called the Kalmbach extension.


## Effect algebras categorically

- Let BPos be category of bounded posets (which have 0 and 1 ).
- Let OMP be category of orthomodular posets.
- Forgetful functor OMP $\rightarrow$ BPos has left adjoint, called the Kalmbach extension.
- Hence, there is a resulting Kalmbach monad $K:$ BPos $\rightarrow$ BPos.


## Effect algebras categorically

- Let BPos be category of bounded posets (which have 0 and 1 ).
- Let OMP be category of orthomodular posets.
- Forgetful functor OMP $\rightarrow$ BPos has left adjoint, called the Kalmbach extension.
- Hence, there is a resulting Kalmbach monad $K:$ BPos $\rightarrow$ BPos.
- The Eilenberg-Moore algebras of this monad are precisely effect algebras.


## Usage 1: Generalising GPTs

- In last talk John Selby talked about generalised probabilistic theories (GPTs) as generalisation of quantum theory.
- But we can also generalise GPTs


## Usage 1: Generalising GPTs

- In last talk John Selby talked about generalised probabilistic theories (GPTs) as generalisation of quantum theory.
- But we can also generalise GPTs
- Instead of convex sets, we get effect algebras.
- Instead of a GPT we get an effectus.
- See Kenta Cho's thesis

Effectuses in Categorical Quantum Foundations.

## Usage 2: Generalising probabilities

Category of effect algebras has tensor products. Its monoids are effect monoids.

## Usage 2: Generalising probabilities

Category of effect algebras has tensor products. Its monoids are effect monoids.

## Definition

An effect monoid ( $M, \otimes, 0,1, \cdot)$ is effect algebra with associative distributive multiplication:

$$
(a \otimes b) \cdot c=(a \cdot c) \otimes(b \cdot c) \quad c \cdot(a \otimes b)=(c \cdot a) \otimes(c \cdot b)
$$

## Usage 2: Generalising probabilities

Category of effect algebras has tensor products. Its monoids are effect monoids.

## Definition

An effect monoid ( $M, \otimes, 0,1, \cdot)$ is effect algebra with associative distributive multiplication:

$$
(a \otimes b) \cdot c=(a \cdot c) \otimes(b \cdot c) \quad c \cdot(a \otimes b)=(c \cdot a) \otimes(c \cdot b)
$$

Examples

- $[0,1]$.
- Any Boolean algebra: $a \otimes b:=a \vee b, a \cdot b:=a \wedge b$.
- $\{f: X \rightarrow[0,1]$ continuous $\}$ for a compact Hausdorff space $X$ (i.e. unit interval of commutative unital $C^{*}$-algebra).


## $\omega$-effect-algebras

- $[0,1]$ does not just have finite sums. Some countable sums exist too!


## $\omega$-effect-algebras

- $[0,1]$ does not just have finite sums. Some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.


## $\omega$-effect-algebras

- $[0,1]$ does not just have finite sums. Some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.

Definition (informal)
An $\omega$-effect-algebra is an EA where an infinite sum exists if all finite subsums exist.

## $\omega$-effect-algebras

- $[0,1]$ does not just have finite sums. Some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.


## Definition (informal)

An $\omega$-effect-algebra is an EA where an infinite sum exists if all finite subsums exist.

## Examples:

- $[0,1]$
- $\omega$-complete Boolean algebra


## $\omega$-effect-algebras

- $[0,1]$ does not just have finite sums. Some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.


## Definition (informal)

An $\omega$-effect-algebra is an EA where an infinite sum exists if all finite subsums exist.

## Examples:

- $[0,1]$
- $\omega$-complete Boolean algebra


## Equivalent definition

In $\omega$ EA increasing sequences $a_{1} \leqslant a_{2} \leqslant \ldots$ have supremum.

## $\omega$-effect-monoids

Theorem (Westerbaan, Westerbaan \& vdW, LICS'20)
An $\omega$-effect-monoid $M$ embeds into $M_{1} \oplus M_{2}$ where

- $M_{1}$ is a $\omega$-complete Boolean algebra
- $M_{2}=\{f: X \rightarrow[0,1]$ cont. $\}$ for basically disconnected $X$.


## $\omega$-effect-monoids

Theorem (Westerbaan, Westerbaan \& vdW, LICS'20)
An $\omega$-effect-monoid $M$ embeds into $M_{1} \oplus M_{2}$ where

- $M_{1}$ is a $\omega$-complete Boolean algebra
- $M_{2}=\{f: X \rightarrow[0,1]$ cont. $\}$ for basically disconnected $X$.

Corollary
$\omega$-effect-monoids are commutative.

## $\omega$-effect-monoids

Theorem (Westerbaan, Westerbaan \& vdW, LICS'20)
An $\omega$-effect-monoid $M$ embeds into $M_{1} \oplus M_{2}$ where

- $M_{1}$ is a $\omega$-complete Boolean algebra
- $M_{2}=\{f: X \rightarrow[0,1]$ cont. $\}$ for basically disconnected $X$.

Corollary
$\omega$-effect-monoids are commutative.
Call $M$ irreducible when $M \cong M_{1} \oplus M_{2}$ implies $M_{i}=\{0\}$.
Corollary
The only irreducible $\omega$-effect-monoids are $\{0\},\{0,1\}$ and $[0,1]$.

## Usage 3: rederiving quantum theory

Effects on Hilbert space have sequential product: $A \& B:=\sqrt{A} B \sqrt{A}$.

## Usage 3: rederiving quantum theory

Effects on Hilbert space have sequential product: $A \& B:=\sqrt{A} B \sqrt{A}$.

Definition (Gudder \& Greechie, 2002)
Let $E$ be effect algebra with operation $\&: E \times E \rightarrow E$.
Write $a \mid b$ when $a \& b=b \& a$.
$(E, \&)$ is a sequential effect algebra when:

- $a \&(b+c)=a \& b+a \& c$
- $1 \& a=a$ and if $a \& b=0$ then also $b \& a=0$.
- If $a \mid b$ then $a \&(b \& c)=(a \& b) \& c$.
- If $a \mid b$ then $a \mid b^{\perp}$, and if also $a \mid c$ then $a|(b+c) \& a|(b \& c)$.


## From sequential effect algebra to quantum theory

Theorem (vdW, 2019)
Let $V$ be finite-dimensional order unit space, such that $E:=[0,1]_{V}$ has norm-continuous sequential product. Then $V$ is a Euclidean Jordan algebra.

## From sequential effect algebra to quantum theory

Theorem (vdW, 2019)
Let $V$ be finite-dimensional order unit space, such that $E:=[0,1] \vee$ has norm-continuous sequential product. Then $V$ is a Euclidean Jordan algebra.

Theorem (Westerbaan, Westerbaan, vdW, 2020)
Let $E$ be directed-complete effect algebra with normal sequential product. Then $E \cong E_{1} \oplus E_{2} \oplus E_{3}$ where

- $E_{1}$ is complete Boolean algebra,
- $E_{2}:=[0,1]_{V}$ for $V$ an order unit space,
- and $E_{3}$ an almost-convex effect algebra.


## Conclusion

- Effect algebras generalise quantum logic to allow for fuzziness.
- Can be used to talk abstractly about probabilities.
- Can be used to rederive quantum mechanics.


## Thank you for your attention!

vdW 2021, arXiv:2106.10094
A Categorical Construction of the Real Unit Interval
vdW 2018, arXiv:1803.11139
Sequential Product Spaces are Jordan Algebras
vdW 2018, arXiv:1801.05798
An effect-theoretic reconstruction of quantum theory
Abraham Westerbaan, Bas Westerbaan \& vdW 2019, arXiv:1912.10040 A characterisation of ordered abstract probabilities

Kenta Cho, Bas Westerbaan \& vdW 2020, arXiv:2003.10245
Dichotomy between deterministic and probabilistic models in countably additive effectus theory

Abraham Westerbaan, Bas Westerbaan \& vdW 2019, arXiv:2004.12749
The three types of normal sequential effect algebras

