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In this talk

§ Hilbert spaces and quantum logic.

§ From orthomodular lattices to effect algebras.

§ Some cool things you can do with effect algebras.



Hilbert spaces and quantum logic

§ Quantum system is modelled by complex Hilbert space H.

§ Propositions modelled by closed subspaces.

§ Equivalently: positive idempotent operators P : HÑ H.

§ What is the structure of the set of projections?



Orthomodular lattices

§ Projections ordered by P ď Q ðñ PQ “ P.

§ Minimal element 0, maximal element I .

§ It is in fact a complete lattice.

§ Negation: PK :“ I ´ P.

§ Ortholattice: pP ^ QqK “ PK _ QK.

§ Orthomodularity: P ď Q ùñ P _ pPK ^ Qq “ Q.

This is the ‘classical’ description of quantum logic. But what if we
want to allow fuzziness?
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Effect algebras

The effects of a Hilbert space are A : HÑ H with 0 ď A ď I .
These model generic (noisy) measurements of a quantum system.

Definition
An effect algebra pE ,>, 0, 1q has

§ partial commutative associative >,

§ with a > 0 “ a,

§ and @a unique aK with a > aK “ 1,

§ such that a K 1 implies a “ 0.

Examples

§ r0, 1s with aK :“ 1´ a.

§ An orthomodular lattice: addition defined when a^ b “ 0 and
then a > b :“ a_ b.

§ CstarpC,Aq – r0, 1sA with aK :“ 1´ a.
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Effect algebras categorically

§ Let BPos be category of bounded posets (which have 0 and 1).

§ Let OMP be category of orthomodular posets.

§ Forgetful functor OMP Ñ BPos has left adjoint, called the
Kalmbach extension.

§ Hence, there is a resulting Kalmbach monad
K : BPos Ñ BPos.

§ The Eilenberg-Moore algebras of this monad are precisely effect
algebras.
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Usage 1: Generalising GPTs

§ In last talk John Selby talked about generalised probabilistic
theories (GPTs) as generalisation of quantum theory.

§ But we can also generalise GPTs

§ Instead of convex sets, we get effect algebras.

§ Instead of a GPT we get an effectus.

§ See Kenta Cho’s thesis
Effectuses in Categorical Quantum Foundations.
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Usage 2: Generalising probabilities

Category of effect algebras has tensor products. Its monoids are
effect monoids.

Definition
An effect monoid pM,>, 0, 1, ¨q is effect algebra with associative
distributive multiplication:

pa > bq ¨ c “ pa ¨ cq> pb ¨ cq c ¨ pa > bq “ pc ¨ aq> pc ¨ bq

Examples

§ r0, 1s.

§ Any Boolean algebra: a > b :“ a_ b, a ¨ b :“ a^ b.

§ tf : X Ñ r0, 1s continuousu for a compact Hausdorff space X
(i.e. unit interval of commutative unital C˚-algebra).
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ω-effect-algebras

§ r0, 1s does not just have finite sums.
Some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Examples:

§ r0, 1s

§ ω-complete Boolean algebra

Equivalent definition

In ωEA increasing sequences a1 ď a2 ď . . . have supremum.



ω-effect-algebras

§ r0, 1s does not just have finite sums.
Some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Examples:

§ r0, 1s

§ ω-complete Boolean algebra

Equivalent definition

In ωEA increasing sequences a1 ď a2 ď . . . have supremum.



ω-effect-algebras

§ r0, 1s does not just have finite sums.
Some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Examples:

§ r0, 1s

§ ω-complete Boolean algebra

Equivalent definition

In ωEA increasing sequences a1 ď a2 ď . . . have supremum.



ω-effect-algebras

§ r0, 1s does not just have finite sums.
Some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Examples:

§ r0, 1s

§ ω-complete Boolean algebra

Equivalent definition

In ωEA increasing sequences a1 ď a2 ď . . . have supremum.



ω-effect-algebras

§ r0, 1s does not just have finite sums.
Some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

An ω-effect-algebra is an EA where an infinite sum exists if all finite
subsums exist.

Examples:

§ r0, 1s

§ ω-complete Boolean algebra

Equivalent definition

In ωEA increasing sequences a1 ď a2 ď . . . have supremum.



ω-effect-monoids

Theorem (Westerbaan, Westerbaan & vdW, LICS’20)

An ω-effect-monoid M embeds into M1 ‘M2 where

§ M1 is a ω-complete Boolean algebra

§ M2 “ tf : X Ñ r0, 1s cont.u for basically disconnected X .

Corollary

ω-effect-monoids are commutative.

Call M irreducible when M – M1 ‘M2 implies Mi “ t0u.

Corollary

The only irreducible ω-effect-monoids are t0u, t0, 1u and r0, 1s.
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Usage 3: rederiving quantum theory

Effects on Hilbert space have sequential product:
A&B :“

?
AB
?
A.

Definition (Gudder & Greechie, 2002)

Let E be effect algebra with operation & : E ˆ E Ñ E .
Write a | b when a& b “ b & a.
pE ,&q is a sequential effect algebra when:

§ a& pb ` cq “ a& b ` a& c

§ 1 & a “ a and if a& b “ 0 then also b & a “ 0.

§ If a | b then a& pb & cq “ pa& bq& c .

§ If a | b then a | bK, and if also a | c then a | pb` cq & a | pb & cq.
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From sequential effect algebra to quantum theory

Theorem (vdW, 2019)

Let V be finite-dimensional order unit space,
such that E :“ r0, 1sV has norm-continuous sequential product.
Then V is a Euclidean Jordan algebra.

Theorem (Westerbaan, Westerbaan, vdW, 2020)

Let E be directed-complete effect algebra with normal sequential
product. Then E – E1 ‘ E2 ‘ E3 where

§ E1 is complete Boolean algebra,

§ E2 :“ r0, 1sV for V an order unit space,

§ and E3 an almost-convex effect algebra.
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Conclusion

§ Effect algebras generalise quantum logic to allow for fuzziness.

§ Can be used to talk abstractly about probabilities.

§ Can be used to rederive quantum mechanics.



Thank you for your attention!
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