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Why Quantum Theory?

Its mathematical description is not particularly compelling:

§ Systems are described by C˚-algebras.

§ States are density matrices.

§ Dynamics are completely positive maps.

§ Measurement outcomes are governed by the trace rule.

§ Composite systems are formed using the tensor product.

Not clear at all why this describes nature so well.



Why Quantum Theory?

Its mathematical description is not particularly compelling:

§ Systems are described by C˚-algebras.

§ States are density matrices.

§ Dynamics are completely positive maps.

§ Measurement outcomes are governed by the trace rule.

§ Composite systems are formed using the tensor product.

Not clear at all why this describes nature so well.



Why Quantum Theory?

Its mathematical description is not particularly compelling:

§ Systems are described by C˚-algebras.

§ States are density matrices.

§ Dynamics are completely positive maps.

§ Measurement outcomes are governed by the trace rule.

§ Composite systems are formed using the tensor product.

Not clear at all why this describes nature so well.



Why Quantum Theory?

A way to answer the question:

Find sensible physical requirements from which it follows.

If successful, we can say:

Quantum theory describes nature because
“it couldn’t have been any other way”

(without nature being that much weirder)
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Modern reconstructions

§ Hardy (2001): First modern reconstructions. 5 axioms.

§ Barrett (2007): Generalised Probabilistic Theories.

§ Dakić and Brukner (2009): Local tomography. Strong axioms.

§ Chiribella, D’Ariano, Perinotti (2011): Informational axioms.

§ Lot of others since then (e.g. Barnum et al. 2014, Masanes et
al. 2014, Höhn 2017, Selby et al. 2018, Tull 2018)
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A suitable framework

Any reconstruction needs a framework...

§ K. Cho, B. Jacobs, B. Westerbaan & A. Westerbaan (2015):
Introduction to effectus theory.

§ B. Westerbaan (2018): Dagger and Dilation in the Category
of Von Neumann algebras.

An effectus « ’generalised generalised probabilistic theory’
real numbers ñ effect monoids
vector spaces ñ effect algebras.
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Effectus Definition

An effectus is a category B with finite coproducts p`, 0q and a
final object I , such that both:

1. The following are pullbacks @X ,Y :

X ` Y X ` I

I ` Y I ` I

!`id

id`!

!`id

id`!

X I

X ` Y I ` I

κ1

!

κ1

!`!

2. The maps v ,w : pI ` I q ` I Ñ I ` I given by

v “ rrκ1, κ2s, κ2s and w “ rrκ2, κ1s, κ2s are jointly monic

(i.e. v ˝ f “ v ˝ g and w ˝ f “ w ˝ g , then f “ g).
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Examples of effectuses

§ Sets (or more generally any topos).

§ Kleisli category of distribution monad (i.e. classical
probabilities).

§ Any category with biproducts and suitable “discard” maps.

§ Opposite of category of order unit spaces
In particular any (causal) general probabilistic theory.

§ Opposite category of von Neumann algebras
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Basic definitions and consequences

§ Partial maps: f : X Ñ Y ` I .

§ States: StpX q :“ HompI ,X q.

§ Effects: EffpX q :“ HompX , I ` I q.

§ Scalars: HompI , I ` I q.

§ The states form an abstract convex set.

§ The effects form an effect algebra.

§ The partial maps preserve this structure.

Definition of effectus is basically chosen to make these things true
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Effect algebras

Definition
An effect algebra pE , 0, 1,`, p¨qKq is a set E with partial
commutative associate “addition” ` and involution p¨qK such that

§ pxKqK “ x ,

§ x ` xK “ 1,

§ If x ` 1 is defined, then x “ 0.

Examples:

§ r0, 1s (x ` y is defined when x ` y ď 1, xK :“ 1´ x).

§ Any Boolean algebra

§ Any interval r0, us with u ě 0 in an ordered vector space

§ In particular: set of effects of C˚-algebra.

Note: Effect algebra is partially ordered by x ď y iff Dz : x ` z “ y .
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Baby effectus

Definition
A Effect theory is a category B with designated object I such that
HompA, I q is an effect algebra, and for any f : B Ñ A:
0 ˝ f “ 0, pp ` qq ˝ f “ pp ˝ f q ` pq ˝ f q.

Very basic structure, we need more assumptions!
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Compressions and filters
A compression for q : AÑ I is a map πq : tA|qu Ñ A with
1 ˝ πq “ q ˝ πq,

such that for all f : B Ñ A with 1 ˝ f “ q ˝ f :

tA|qu A

B

πq

f
f

A filter for q : AÑ I is a map ξq : AÑ Aq with 1 ˝ ξ ď q, such
that for all f : AÑ B with 1 ˝ f ď q:

Aq A

B

f

ξq

f



Compressions and filters
A compression for q : AÑ I is a map πq : tA|qu Ñ A with
1 ˝ πq “ q ˝ πq, such that for all f : B Ñ A with 1 ˝ f “ q ˝ f :

tA|qu A

B

πq

f
f

A filter for q : AÑ I is a map ξq : AÑ Aq with 1 ˝ ξ ď q, such
that for all f : AÑ B with 1 ˝ f ď q:

Aq A

B

f

ξq

f



Compressions and filters
A compression for q : AÑ I is a map πq : tA|qu Ñ A with
1 ˝ πq “ q ˝ πq, such that for all f : B Ñ A with 1 ˝ f “ q ˝ f :

tA|qu A

B

πq

f
f

A filter for q : AÑ I is a map ξq : AÑ Aq with 1 ˝ ξ ď q,

such
that for all f : AÑ B with 1 ˝ f ď q:

Aq A

B

f

ξq

f



Compressions and filters
A compression for q : AÑ I is a map πq : tA|qu Ñ A with
1 ˝ πq “ q ˝ πq, such that for all f : B Ñ A with 1 ˝ f “ q ˝ f :

tA|qu A

B

πq

f
f

A filter for q : AÑ I is a map ξq : AÑ Aq with 1 ˝ ξ ď q, such
that for all f : AÑ B with 1 ˝ f ď q:

Aq A

B

f

ξq

f



Quotient and Comprehension: All the adjunctions!

Pred˝pCq:
Objects are pX , p : X Ñ I q.

Morphisms: f : pX , pq Ñ pY , qq is
f : X Ñ Y with pK ě qK ˝ f .

Source: arXiv:1512.05813, p.97

See also: Cho, Jacobs, Westerbaan2 2015. Quotient–Comprehension Chains



Example

Let MatopC be the opposite category of positive sub-unital maps
f : MnpCq Ñ MmpCq. I.e a ě 0 ùñ f paq ě 0 and f p1q ď 1.

An effect then corresponds to q P MnpCq with 0 ď q ď 1.

Write q “
ř

i λiqi with λi ą 0, qiqj “ δijqi .
Define rqs “

ř

i qi . tqu “
ř

i ;λi“1
qi .

The projection πq : MnpCq Ñ tquMnpCqtqu is a compression.

ξq : rqsMnpCqrqs Ñ MnpCq with ξqppq “
?
qp
?
q is a filter.
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Images, kernels and cokernels

Definition
An image of f : AÑ B is the smallest effect q P EffpBq such that
qK ˝ f “ 0.

An effect q is sharp if it is an image of some map.

Proposition

An effect theory has images, and for all sharp effects compressions
and filters if and only if the category has all kernels and cokernels.

In fact: compressions are kernels, and filters for sharp effects are
cokernels.
ñ filters are “fuzzy” cokernels.
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Pure maps

Definition
We call a map f pure when there exists a filter ξ and compression
π such that f “ π ˝ ξ.

Motivation: In MatopC a map f : MnpCq Ñ MmpCq is pure iff
DV : Cn Ñ Cm such that f paq “ VaV : for all a.

Remark
From definition it is not clear that pure maps are closed under
composition. But: In MatopC it is true.
Also: there is an obvious dagger on pure maps in MatopC .
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Pure effect Theories

Definition
A pure effect theory (PET) is an effect theory satisfying the
following:

1. All maps have images.

2. When q is sharp, qK is sharp.

3. All effects have filters and compressions.

4. The pure maps form a dagger-category.

5. If πq is a compression for sharp q, then π:q is a filter for q.

6. Compressions for sharp q are isometries: π:q ˝ πq “ id.
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Examples of PETs:

§ Kleisli category of distribution monad.

§ vNAop
ncpsu: von Neumann algebras with normal completely

positive sub-unital maps between them.

§ Category of real C˚-algebras.

§ EJAop
psu: positive sub-unital maps between Euclidean Jordan

algebras.
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Euclidean Jordan algebras

Definition
A Euclidean Jordan algebra (EJA) pE , x¨, ¨y, ˚, 1q is a real Hilbert
space with a product that satisfies @a, b, c :

a˚1 “ a a˚b “ b˚a a˚pb˚a2q “ pa˚bq˚a2 xa˚b, cy “ xb, a˚cy

We have an order a ě 0 ðñ Db : a “ b ˚ b :“ b2.

Example: MnpF q
sa — self-adjoint matrices over F “ R,C,H with

A ˚ B :“ 1
2pAB ` BAq and xA,By :“ trpABq.
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Me explaining why Jordan algebras are cool:



Operational effect theory

Definition
We call an effect theory operational when

§ Scalars are real: EffpI q “ r0, 1s.

§ States order-separate the effects.

§ The effect spaces are finite-dimensional.

§ The sets of states are closed.

§ If EffpAq – r0, 1s then A – I .

Operational effect theory « generalized probabilistic theory
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Main result 1: Everything is a Jordan algebra

Theorem
Let B be an operational PET. Then there is a functor
F : BÑ EJAop

psu with F pEffpAqq – EffpF pAqq.

It is faithful iff the effects of B separate the maps.
(If @p : p ˝ f “ p ˝ g then f “ g)

“Operational PETs are Euclidean Jordan algebras”
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Monoidal effect theories

How to go from Jordan algebras to quantum theory?

Answer: Jordan algebras don’t have tensor products

Definition
An effect theory is monoidal when it is monoidal with I as unit
such that tensor preserves addition. A PET is monoidal if the
subcategory of pure maps is in addition also monoidal.
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Definition
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such that tensor preserves addition. A PET is monoidal if the
subcategory of pure maps is in addition also monoidal.



Quantum Theory Reconstructed

Theorem
Let B be a monoidal operational PET. Then there is a functor
F : BÑ Cop with F pEffpAqq – EffpF pAqq where C is the category
of real or complex C˚-algebras.

Furthermore, if effects separate maps, then it is faithful and
C˚-algebras must be complex.

Recall the assumptions:

1. All maps have images.

2. When q is sharp, qK is sharp.

3. All effects have filters and compressions.

4. The pure maps form a monoidal dagger-category.

5. If πq is a compression for sharp q, then π:q is a filter for q.

6. Compressions for sharp q are isometries: π:q ˝ πq “ id.
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Conclusion and Future work

§ Definition of purity motivated trough effectus theory

§ Operational PET + purity assumptions = Jordan algebras

§ Adding tensor products gives C˚-algebras.

Future work:

§ Minimality of conditions?

§ How much can be done in abstract setting?

§ Can we get Jordan algebras over different fields?

§ Characterize infinite-dimensional quantum theory?
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