An effect-theoretic reconstruction of quantum theory

John van de Wetering
john@vdwetering.name http://vdwetering.name
Institute for Computing and Information Sciences
Radboud University Nijmegen

ACT2019
19th of July 2019

Why Quantum Theory?

Why Quantum Theory?

Its mathematical description is not particularly compelling:

- Systems are described by C*-algebras.
- States are density matrices.
- Dynamics are completely positive maps.
- Measurement outcomes are governed by the trace rule.
- Composite systems are formed using the tensor product.

Why Quantum Theory?

Its mathematical description is not particularly compelling:

- Systems are described by C*-algebras.
- States are density matrices.
- Dynamics are completely positive maps.
- Measurement outcomes are governed by the trace rule.
- Composite systems are formed using the tensor product.

Not clear at all why this describes nature so well.

Why Quantum Theory?

A way to answer the question:
Find sensible physical requirements from which it follows.

Why Quantum Theory?

A way to answer the question:
Find sensible physical requirements from which it follows.

If successful, we can say:
Quantum theory describes nature because "it couldn't have been any other way"
(without nature being that much weirder)

Modern reconstructions

- Hardy (2001): First modern reconstructions. 5 axioms.

Modern reconstructions

- Hardy (2001): First modern reconstructions. 5 axioms.
- Barrett (2007): Generalised Probabilistic Theories.

Modern reconstructions

- Hardy (2001): First modern reconstructions. 5 axioms.
- Barrett (2007): Generalised Probabilistic Theories.
- Dakić and Brukner (2009): Local tomography. Strong axioms.

Modern reconstructions

- Hardy (2001): First modern reconstructions. 5 axioms.
- Barrett (2007): Generalised Probabilistic Theories.
- Dakić and Brukner (2009): Local tomography. Strong axioms.
- Chiribella, D'Ariano, Perinotti (2011): Informational axioms.

Modern reconstructions

- Hardy (2001): First modern reconstructions. 5 axioms.
- Barrett (2007): Generalised Probabilistic Theories.
- Dakić and Brukner (2009): Local tomography. Strong axioms.
- Chiribella, D'Ariano, Perinotti (2011): Informational axioms.
- Lot of others since then (e.g. Barnum et al. 2014, Masanes et al. 2014, Höhn 2017, Selby et al. 2018, Tull 2018)

Modern reconstructions

- Hardy (2001): First modern reconstructions. 5 axioms.
- Barrett (2007): Generalised Probabilistic Theories.
- Dakić and Brukner (2009): Local tomography. Strong axioms.
- Chiribella, D'Ariano, Perinotti (2011): Informational axioms.
- Lot of others since then (e.g. Barnum et al. 2014, Masanes et al. 2014, Höhn 2017, Selby et al. 2018, Tull 2018)

In this talk:
"Any theory with well-behaved pure maps is quantum theory"
All axioms taken from effectus theory

A suitable framework

Any reconstruction needs a framework...

A suitable framework

Any reconstruction needs a framework...

- K. Cho, B. Jacobs, B. Westerbaan \& A. Westerbaan (2015): Introduction to effectus theory.
- B. Westerbaan (2018): Dagger and Dilation in the Category of Von Neumann algebras.

A suitable framework

Any reconstruction needs a framework...

- K. Cho, B. Jacobs, B. Westerbaan \& A. Westerbaan (2015): Introduction to effectus theory.
- B. Westerbaan (2018): Dagger and Dilation in the Category of Von Neumann algebras.

An effectus \approx 'generalised generalised probabilistic theory'
real numbers \Rightarrow effect monoids
vector spaces \Rightarrow effect algebras.

Effectus Definition

An effectus is a category \mathbf{B} with finite coproducts $(+, 0)$ and a final object I, such that both:

Effectus Definition

An effectus is a category \mathbf{B} with finite coproducts $(+, 0)$ and a final object l, such that both:

1. The following are pullbacks $\forall X, Y$:

Effectus Definition

An effectus is a category \mathbf{B} with finite coproducts $(+, 0)$ and a final object l, such that both:

1. The following are pullbacks $\forall X, Y$:

2. The maps $v, w:(I+I)+I \rightarrow I+I$ given by

$$
v=\left[\left[\kappa_{1}, \kappa_{2}\right], \kappa_{2}\right] \text { and } w=\left[\left[\kappa_{2}, \kappa_{1}\right], \kappa_{2}\right] \text { are jointly monic }
$$

(i.e. $v \circ f=v \circ g$ and $w \circ f=w \circ g$, then $f=g$).

Examples of effectuses

- Sets (or more generally any topos).

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).
- Any category with biproducts and suitable "discard" maps.

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).
- Any category with biproducts and suitable "discard" maps.
- Opposite of category of order unit spaces In particular any (causal) general probabilistic theory.

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).
- Any category with biproducts and suitable "discard" maps.
- Opposite of category of order unit spaces In particular any (causal) general probabilistic theory.
- Opposite category of von Neumann algebras

Basic definitions and consequences

- Partial maps: $f: X \rightarrow Y+I$.
- States: $\operatorname{St}(X):=\operatorname{Hom}(I, X)$.
- Effects: $\operatorname{Eff}(X):=\operatorname{Hom}(X, I+I)$.
- Scalars: $\operatorname{Hom}(I, I+I)$.

Basic definitions and consequences

- Partial maps: $f: X \rightarrow Y+I$.
- States: $\operatorname{St}(X):=\operatorname{Hom}(I, X)$.
- Effects: $\operatorname{Eff}(X):=\operatorname{Hom}(X, I+I)$.
- Scalars: $\operatorname{Hom}(I, I+I)$.
- The states form an abstract convex set.
- The effects form an effect algebra.
- The partial maps preserve this structure.

Basic definitions and consequences

- Partial maps: $f: X \rightarrow Y+I$.
- States: $\operatorname{St}(X):=\operatorname{Hom}(I, X)$.
- Effects: $\operatorname{Eff}(X):=\operatorname{Hom}(X, I+I)$.
- Scalars: $\operatorname{Hom}(I, I+I)$.
- The states form an abstract convex set.
- The effects form an effect algebra.
- The partial maps preserve this structure.

Definition of effectus is basically chosen to make these things true

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associate "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associate "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associate "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.
- Any Boolean algebra
- Any interval $[0, u]$ with $u \geqslant 0$ in an ordered vector space
- In particular: set of effects of C*-algebra.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associate "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.
- Any Boolean algebra
- Any interval $[0, u]$ with $u \geqslant 0$ in an ordered vector space
- In particular: set of effects of C^{*}-algebra.

Note: Effect algebra is partially ordered by $x \leqslant y$ iff $\exists z: x+z=y$.

Baby effectus

Definition
A Effect theory is a category \mathbf{B} with designated object $/$ such that $\operatorname{Hom}(A, I)$ is an effect algebra, and for any $f: B \rightarrow A$:
$0 \circ f=0,(p+q) \circ f=(p \circ f)+(q \circ f)$.

Baby effectus

Definition
A Effect theory is a category \mathbf{B} with designated object $/$ such that $\operatorname{Hom}(A, I)$ is an effect algebra, and for any $f: B \rightarrow A$:
$0 \circ f=0,(p+q) \circ f=(p \circ f)+(q \circ f)$.
Very basic structure, we need more assumptions!

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}:\{A \mid q\} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$,

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}:\{A \mid q\} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$, such that for all $f: B \rightarrow A$ with $1 \circ f=q \circ f$:

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}:\{A \mid q\} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$, such that for all $f: B \rightarrow A$ with $1 \circ f=q \circ f$:

A filter for $q: A \rightarrow I$ is a $\operatorname{map} \xi_{q}: A \rightarrow A_{q}$ with $1 \circ \xi \leqslant q$,

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}:\{A \mid q\} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$, such that for all $f: B \rightarrow A$ with $1 \circ f=q \circ f$:

A filter for $q: A \rightarrow I$ is a map $\xi_{q}: A \rightarrow A_{q}$ with $1 \circ \xi \leqslant q$, such that for all $f: A \rightarrow B$ with $1 \circ f \leqslant q$:

Quotient and Comprehension: All the adjunctions!

$$
\underset{\substack{\text { Quotient } \\(X, p) \mapsto X / p}}{\operatorname{Pred}_{\square}(\mathbf{C})}
$$

$$
\begin{gathered}
\operatorname{Pred}_{\square}(\mathbf{C}): \\
\text { Objects are }(X, p: X \rightarrow I) . \\
\text { Morphisms: } f:(X, p) \rightarrow(Y, q) \text { is } \\
f: X \rightarrow Y \text { with } p^{\perp} \geqslant q^{\perp} \circ f .
\end{gathered}
$$

Source: arXiv:1512.05813, p. 97

See also: Cho, Jacobs, Westerbaan ${ }^{2}$ 2015. Quotient-Comprehension Chains

Example

Let $\mathrm{Mat}_{\mathbb{C}}^{\text {op }}$ be the opposite category of positive sub-unital maps $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$. I.e $a \geqslant 0 \Longrightarrow f(a) \geqslant 0$ and $f(1) \leqslant 1$.

Example

Let $\mathbf{M a t} \mathbf{t}_{\mathbb{C}}^{\text {op }}$ be the opposite category of positive sub-unital maps $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$. I.e $a \geqslant 0 \Longrightarrow f(a) \geqslant 0$ and $f(1) \leqslant 1$.

An effect then corresponds to $q \in M_{n}(\mathbb{C})$ with $0 \leqslant q \leqslant 1$.
Write $q=\sum_{i} \lambda_{i} q_{i}$ with $\lambda_{i}>0, q_{i} q_{j}=\delta_{i j} q_{i}$.
Define $\lceil q\rceil=\sum_{i} q_{i} .\lfloor q\rfloor=\sum_{i ; \lambda_{i}=1} q_{i}$.

Example

Let $\mathbf{M a t} \mathbf{t}_{\mathbb{C}}^{\text {op }}$ be the opposite category of positive sub-unital maps $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$. I.e $a \geqslant 0 \Longrightarrow f(a) \geqslant 0$ and $f(1) \leqslant 1$.

An effect then corresponds to $q \in M_{n}(\mathbb{C})$ with $0 \leqslant q \leqslant 1$.
Write $q=\sum_{i} \lambda_{i} q_{i}$ with $\lambda_{i}>0, q_{i} q_{j}=\delta_{i j} q_{i}$.
Define $\lceil q\rceil=\sum_{i} q_{i} .\lfloor q\rfloor=\sum_{i ; \lambda_{i}=1} q_{i}$.
The projection $\pi_{q}: M_{n}(\mathbb{C}) \rightarrow\lfloor q\rfloor M_{n}(\mathbb{C})\lfloor q\rfloor$ is a compression.
$\xi_{q}:\lceil q\rceil M_{n}(\mathbb{C})\lceil q\rceil \rightarrow M_{n}(\mathbb{C})$ with $\xi_{q}(p)=\sqrt{q} p \sqrt{q}$ is a filter.

Images, kernels and cokernels

Definition
An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.

Images, kernels and cokernels

Definition
An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.
An effect q is sharp if it is an image of some map.

Images, kernels and cokernels

Definition

An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.
An effect q is sharp if it is an image of some map.

Proposition

An effect theory has images, and for all sharp effects compressions and filters if and only if the category has all kernels and cokernels.

Images, kernels and cokernels

Definition

An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.
An effect q is sharp if it is an image of some map.

Proposition

An effect theory has images, and for all sharp effects compressions and filters if and only if the category has all kernels and cokernels.

In fact: compressions are kernels, and filters for sharp effects are cokernels.
\Rightarrow filters are "fuzzy" cokernels.

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Motivation: In Mat ${ }_{\mathbb{C}}^{\text {op }}$ a map $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is pure iff $\exists V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $f(a)=V a V^{\dagger}$ for all a.

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Motivation: In Mat ${ }_{\mathbb{C}}^{\text {op }}$ a map $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is pure iff $\exists V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $f(a)=V a V^{\dagger}$ for all a.

Remark

From definition it is not clear that pure maps are closed under composition. But: In Mat ${ }_{\mathbb{C}}^{\mathrm{op}}$ it is true.

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Motivation: \ln Mat ${ }_{\mathbb{C}}^{\text {op }}$ a map $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is pure iff $\exists V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $f(a)=V_{a} V^{\dagger}$ for all a.

Remark

From definition it is not clear that pure maps are closed under composition. But: In Mat ${ }_{\mathbb{C}}^{\mathrm{op}}$ it is true.
Also: there is an obvious dagger on pure maps in Mat ${ }_{\mathbb{C}}^{\mathrm{Op}}$.

Pure effect Theories

Definition
A pure effect theory (PET) is an effect theory satisfying the following:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.

Pure effect Theories

Definition

A pure effect theory (PET) is an effect theory satisfying the following:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.
3. All effects have filters and compressions.
4. The pure maps form a dagger-category.

Pure effect Theories

Definition

A pure effect theory (PET) is an effect theory satisfying the following:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.
3. All effects have filters and compressions.
4. The pure maps form a dagger-category.
5. If π_{q} is a compression for sharp q, then π_{q}^{\dagger} is a filter for q.
6. Compressions for sharp q are isometries: $\pi_{q}^{\dagger} \circ \pi_{q}=\mathrm{id}$.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.
- vNA ${ }_{\text {ncpsu }}^{\circ \mathrm{p}}$: von Neumann algebras with normal completely positive sub-unital maps between them.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.
- vNA ${ }_{\text {ncpsu }}^{\circ \mathrm{p}}$: von Neumann algebras with normal completely positive sub-unital maps between them.
- Category of real C*-algebras.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.
- vNA ${ }_{\text {ncpsu }}^{\circ \mathrm{p}}$: von Neumann algebras with normal completely positive sub-unital maps between them.
- Category of real C*-algebras.
- EJA psu: positive sub-unital maps between Euclidean Jordan algebras.

Euclidean Jordan algebras

Definition

A Euclidean Jordan algebra (EJA) $(E,\langle\cdot, \cdot\rangle, *, 1)$ is a real Hilbert space with a product that satisfies $\forall a, b, c$:

$$
a * 1=a \quad a * b=b * a \quad a *\left(b * a^{2}\right)=(a * b) * a^{2} \quad\langle a * b, c\rangle=\langle b, a * c\rangle
$$

Euclidean Jordan algebras

Definition

A Euclidean Jordan algebra (EJA) $(E,\langle\cdot, \cdot\rangle, *, 1)$ is a real Hilbert space with a product that satisfies $\forall a, b, c$:
$a * 1=a \quad a * b=b * a \quad a *\left(b * a^{2}\right)=(a * b) * a^{2} \quad\langle a * b, c\rangle=\langle b, a * c\rangle$
We have an order $a \geqslant 0 \Longleftrightarrow \exists b: a=b * b:=b^{2}$.

Euclidean Jordan algebras

Definition

A Euclidean Jordan algebra (EJA) $(E,\langle\cdot, \cdot\rangle, *, 1)$ is a real Hilbert space with a product that satisfies $\forall a, b, c$:
$a * 1=a \quad a * b=b * a \quad a *\left(b * a^{2}\right)=(a * b) * a^{2} \quad\langle a * b, c\rangle=\langle b, a * c\rangle$
We have an order $a \geqslant 0 \Longleftrightarrow \exists b: a=b * b:=b^{2}$.
Example: $M_{n}(F)^{\text {sa }}$ - self-adjoint matrices over $F=\mathbb{R}, \mathbb{C}, \mathbb{H}$ with $A * B:=\frac{1}{2}(A B+B A)$ and $\langle A, B\rangle:=\operatorname{tr}(A B)$.

HTA

Me explaining why Jordan algebras are cool:

Operational effect theory

Definition
We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.

Operational effect theory

Definition

We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.
- The effect spaces are finite-dimensional.
- The sets of states are closed.

Operational effect theory

Definition

We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.
- The effect spaces are finite-dimensional.
- The sets of states are closed.
- If $\operatorname{Eff}(A) \cong[0,1]$ then $A \cong I$.

Operational effect theory

Definition

We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.
- The effect spaces are finite-dimensional.
- The sets of states are closed.
- If $\operatorname{Eff}(A) \cong[0,1]$ then $A \cong 1$.

Operational effect theory \approx generalized probabilistic theory

Main result 1: Everything is a Jordan algebra

Theorem
Let \mathbf{B} be an operational PET. Then there is a functor $F: \mathbf{B} \rightarrow \mathbf{E J A}_{p s u}^{\circ \mathrm{op}}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$.

Main result 1: Everything is a Jordan algebra

Theorem
Let \mathbf{B} be an operational PET. Then there is a functor $F: \mathbf{B} \rightarrow \mathbf{E J A}_{p s u}^{\circ \mathrm{op}}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$.
It is faithful iff the effects of \mathbf{B} separate the maps.
(If $\forall p: p \circ f=p \circ g$ then $f=g$)

Main result 1: Everything is a Jordan algebra

Theorem
Let \mathbf{B} be an operational PET. Then there is a functor $F: \mathbf{B} \rightarrow \mathbf{E J A}_{p s u}^{\mathrm{op}}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$.
It is faithful iff the effects of \mathbf{B} separate the maps.
(If $\forall p: p \circ f=p \circ g$ then $f=g$)
"Operational PETs are Euclidean Jordan algebras"

Monoidal effect theories

How to go from Jordan algebras to quantum theory?

Monoidal effect theories

How to go from Jordan algebras to quantum theory?
Answer: Jordan algebras don't have tensor products

Monoidal effect theories

How to go from Jordan algebras to quantum theory?
Answer: Jordan algebras don't have tensor products

Definition

An effect theory is monoidal when it is monoidal with I as unit such that tensor preserves addition.

Monoidal effect theories

How to go from Jordan algebras to quantum theory?
Answer: Jordan algebras don't have tensor products

Definition

An effect theory is monoidal when it is monoidal with I as unit such that tensor preserves addition. A PET is monoidal if the subcategory of pure maps is in addition also monoidal.

Quantum Theory Reconstructed

Theorem
Let \mathbf{B} be a monoidal operational PET. Then there is a functor $F: \mathbf{B} \rightarrow \mathbf{C}^{\text {op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$ where \mathbf{C} is the category of real or complex C^{*}-algebras.

Quantum Theory Reconstructed

Theorem
Let \mathbf{B} be a monoidal operational PET. Then there is a functor $F: \mathbf{B} \rightarrow \mathbf{C}^{\text {op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$ where \mathbf{C} is the category of real or complex C^{*}-algebras.
Furthermore, if effects separate maps, then it is faithful and C*-algebras must be complex.

Quantum Theory Reconstructed

Theorem
Let \mathbf{B} be a monoidal operational PET. Then there is a functor $F: \mathbf{B} \rightarrow \mathbf{C}^{\text {op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$ where \mathbf{C} is the category of real or complex C^{*}-algebras.
Furthermore, if effects separate maps, then it is faithful and C*-algebras must be complex.

Recall the assumptions:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.
3. All effects have filters and compressions.
4. The pure maps form a monoidal dagger-category.
5. If π_{q} is a compression for sharp q, then π_{q}^{\dagger} is a filter for q.
6. Compressions for sharp q are isometries: $\pi_{q}^{\dagger} \circ \pi_{q}=$ id.

Conclusion and Future work

- Definition of purity motivated trough effectus theory

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions $=$ Jordan algebras

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions $=$ Jordan algebras
- Adding tensor products gives C*-algebras. *.

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions $=$ Jordan algebras
- Adding tensor products gives C*-algebras.

Future work:

- Minimality of conditions?

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions $=$ Jordan algebras
- Adding tensor products gives C*-algebras.

Future work:

- Minimality of conditions?
- How much can be done in abstract setting?

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C*-algebras. *.

Future work:

- Minimality of conditions?
- How much can be done in abstract setting?
- Can we get Jordan algebras over different fields?

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C*-algebras.

Future work:

- Minimality of conditions?
- How much can be done in abstract setting?
- Can we get Jordan algebras over different fields?
- Characterize infinite-dimensional quantum theory?

Advertisements

The category of von Neumann algebras
A. Westerbaan (PhD Thesis)
arXiv:1804.02203
Dagger and dilations in the category of von Neumann algebras
B. Westerbaan (PhD Thesis)
arXiv:1803.01911

Advertisements

The category of von Neumann algebras
A. Westerbaan (PhD Thesis)
arXiv:1804.02203
Dagger and dilations in the category of von Neumann algebras
B. Westerbaan (PhD Thesis)
arXiv:1803.01911
Purity in Euclidean Jordan algebras
A. Westerbaan, B.Westerbaan, vdW
arXiv:1805.11496
An effect-theoretic reconstruction of quantum theory vdW
arXiv:1801. 05798

Thank you for your attention

