An effect-theoretic reconstruction of quantum theory

John van de Wetering
john@vdwetering.name
http://vdwetering.name

Institute for Computing and Information Sciences
Radboud University Nijmegen

MIT Applied Categories Seminar
October 15, 2020

In this talk

- The use of physical principles in physics
- A brief history of (reconstructing) quantum theory
- Generalised probabilistic theories
- Effectus theory and a new reconstruction

Why Quantum Theory?

Why Relativity?

Einstein and relativity

- Einstein postulated two general physical principles:

Einstein and relativity

- Einstein postulated two general physical principles:
- Constancy of speed of light.
- Constancy of physical laws in different reference frames.

Einstein and relativity

- Einstein postulated two general physical principles:
- Constancy of speed of light.
- Constancy of physical laws in different reference frames.
- From this he derived Minkowski spacetime / Lorentz transformations

Einstein and relativity

- Einstein postulated two general physical principles:
- Constancy of speed of light.
- Constancy of physical laws in different reference frames.
- From this he derived Minkowski spacetime / Lorentz transformations
- At the time there wasn't much evidence supporting this.

Einstein and relativity

- Einstein postulated two general physical principles:
- Constancy of speed of light.
- Constancy of physical laws in different reference frames.
- From this he derived Minkowski spacetime / Lorentz transformations
- At the time there wasn't much evidence supporting this.
- It took him 10 years to formalise his third principle:
- Gravitational and inertial acceleration are equivalent.

Einstein and relativity

- Einstein postulated two general physical principles:
- Constancy of speed of light.
- Constancy of physical laws in different reference frames.
- From this he derived Minkowski spacetime / Lorentz transformations
- At the time there wasn't much evidence supporting this.
- It took him 10 years to formalise his third principle:
- Gravitational and inertial acceleration are equivalent.
- Incredibly, his theory still seems correct for large scale structures.

Benefits of physical principles

Benefits of physical principles

- It is productive
(Einstein found the correct theory without much evidence)

Benefits of physical principles

- It is productive
(Einstein found the correct theory without much evidence)
- It motivates the mathematical structure of the theory.
E.g. Why is spacetime curved? It is needed for the equivalence principle.

Benefits of physical principles

- It is productive
(Einstein found the correct theory without much evidence)
- It motivates the mathematical structure of the theory.
E.g. Why is spacetime curved? It is needed for the equivalence principle.
- It points to meaningful experiments. (we can test the constancy of the speed of light)

Benefits of physical principles

- It is productive
(Einstein found the correct theory without much evidence)
- It motivates the mathematical structure of the theory.
E.g. Why is spacetime curved? It is needed for the equivalence principle.
- It points to meaningful experiments. (we can test the constancy of the speed of light)
- Aesthetically pleasing. (reduces 'why relativity?' to 'why these principles?')

Benefits of physical principles

- It is productive
(Einstein found the correct theory without much evidence)
- It motivates the mathematical structure of the theory.
E.g. Why is spacetime curved? It is needed for the equivalence principle.
- It points to meaningful experiments. (we can test the constancy of the speed of light)
- Aesthetically pleasing. (reduces 'why relativity?' to 'why these principles?')
- Helps the search for generalisations (because you know you need to break one of these principles)

Back to quantum theory

Very brief history of quantum mechanics

- 1900-1925: Ad-hoc explanations using the idea of quanta in various areas of physics.

Very brief history of quantum mechanics

- 1900-1925: Ad-hoc explanations using the idea of quanta in various areas of physics.
- 1925: Heisenberg, Born and Jordan developed matrix mechanics, Schrödinger developed wave mechanics.
- 1932: von Neumann, Mathematische Grundlagen der Quantenmechanik.

Very brief history of quantum mechanics

- 1900-1925: Ad-hoc explanations using the idea of quanta in various areas of physics.
- 1925: Heisenberg, Born and Jordan developed matrix mechanics, Schrödinger developed wave mechanics.
- 1932: von Neumann, Mathematische Grundlagen der Quantenmechanik.

Basically, we now still use the mathematical framework specified by von Neumann.

Mathematical postulates of quantum mechanics

- To each physical system we associate a complex Hilbert space \mathscr{H}.
- The states of a system correspond to unit vectors $|\psi\rangle \in \mathscr{H}$ up to global phase.

Mathematical postulates of quantum mechanics

- To each physical system we associate a complex Hilbert space \mathscr{H}.
- The states of a system correspond to unit vectors $|\psi\rangle \in \mathscr{H}$ up to global phase.
- Physical observables are self-adjoint operators A on \mathscr{H}.
- The expectation value of A on $|\psi\rangle$ is $\langle\psi| A|\psi\rangle$.

Mathematical postulates of quantum mechanics

- To each physical system we associate a complex Hilbert space \mathscr{H}.
- The states of a system correspond to unit vectors $|\psi\rangle \in \mathscr{H}$ up to global phase.
- Physical observables are self-adjoint operators A on \mathscr{H}.
- The expectation value of A on $|\psi\rangle$ is $\langle\psi| A|\psi\rangle$.
- If the energy of a system is given by the observable H, then the system evolves as $|\psi(t)\rangle=e^{-i t H}|\psi\rangle$.

Mathematical postulates of quantum mechanics

- To each physical system we associate a complex Hilbert space \mathscr{H}.
- The states of a system correspond to unit vectors $|\psi\rangle \in \mathscr{H}$ up to global phase.
- Physical observables are self-adjoint operators A on \mathscr{H}.
- The expectation value of A on $|\psi\rangle$ is $\langle\psi| A|\psi\rangle$.
- If the energy of a system is given by the observable H, then the system evolves as $|\psi(t)\rangle=e^{-i t H}|\psi\rangle$.
- The Hilbert space of a composite system is given by the tensor product of the component Hilbert spaces.

So many questions...

- Why Hilbert space?
- Why a complex one?
- Why are states unit vectors and why up to global phase?

So many questions...

- Why Hilbert space?
- Why a complex one?
- Why are states unit vectors and why up to global phase?
- Why are observables linear operators on the Hilbert space?
- Why self-adjoint?
- Why are probabilities given by the inner product?

So many questions...

-Why Hilbert space?

- Why a complex one?
- Why are states unit vectors and why up to global phase?
-Why are observables linear operators on the Hilbert space?
- Why self-adjoint?
-Why are probabilities given by the inner product?
- Why is time-evolution given by a unitary map of the form $e^{i t H}$?

So many questions...

-Why Hilbert space?

- Why a complex one?
- Why are states unit vectors and why up to global phase?
-Why are observables linear operators on the Hilbert space?
- Why self-adjoint?
-Why are probabilities given by the inner product?
- Why is time-evolution given by a unitary map of the form $e^{i t H}$?
- Why is a composite system described by a tensor product?

Answering these questions

- The search for answers to these questions has been going on for almost 100 years.

Answering these questions

- The search for answers to these questions has been going on for almost 100 years.
- Early work (\sim 1930-1960) tried to generalise quantum mechanics.
- This sort of always failed.

Answering these questions

- The search for answers to these questions has been going on for almost 100 years.
- Early work (\sim 1930-1960) tried to generalise quantum mechanics.
- This sort of always failed.
- Later work tried to show why this always failed, i.e. why quantum mechanics is 'inevitable' (first expressed by Mackey in 1957).

Answering these questions

- The search for answers to these questions has been going on for almost 100 years.
- Early work (\sim 1930-1960) tried to generalise quantum mechanics.
- This sort of always failed.
- Later work tried to show why this always failed, i.e. why quantum mechanics is 'inevitable' (first expressed by Mackey in 1957).
- First a lot of work was done in quantum logic (1960-1980), which was capped of by Soler's theorem in 1995.

Answering these questions

- The search for answers to these questions has been going on for almost 100 years.
- Early work (\sim 1930-1960) tried to generalise quantum mechanics.
- This sort of always failed.
- Later work tried to show why this always failed, i.e. why quantum mechanics is 'inevitable' (first expressed by Mackey in 1957).
- First a lot of work was done in quantum logic (1960-1980), which was capped of by Soller's theorem in 1995.
- Modern work (2000-2020) focuses more on operational frameworks.

Operational viewpoint

A quantity or concept is operational when it corresponds to something measurable or observable (in a lab).

Operational viewpoint

A quantity or concept is operational when it corresponds to something measurable or observable (in a lab).

- In relativity: clocks, rods, events, observers.

Operational viewpoint

A quantity or concept is operational when it corresponds to something measurable or observable (in a lab).

- In relativity: clocks, rods, events, observers.
- Entropy is a priori an abstract quantity, but via Shannon information theory can be given an operational interpretation.

Operational viewpoint

A quantity or concept is operational when it corresponds to something measurable or observable (in a lab).

- In relativity: clocks, rods, events, observers.
- Entropy is a priori an abstract quantity, but via Shannon information theory can be given an operational interpretation.
- Measurement probabilities are operational: 'prepare this state, apply this transformation, do this measurement. Repeat many times and record the probability of observing a certain outcome'.

GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use the framework of generalized probabilistic theories (GPTs), also called operational probabilistic theories (OPTs).

GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use the framework of generalized probabilistic theories (GPTs), also called operational probabilistic theories (OPTs).

- We have a collection of types of physical systems A, B, C, \ldots.

GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use the framework of generalized probabilistic theories (GPTs), also called operational probabilistic theories (OPTs).

- We have a collection of types of physical systems A, B, C, \ldots.
- Each system can be prepared in different ways leading to different states of the system $\omega \in \operatorname{St}(A)$.

GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use the framework of generalized probabilistic theories (GPTs), also called operational probabilistic theories (OPTs).

- We have a collection of types of physical systems A, B, C, \ldots.
- Each system can be prepared in different ways leading to different states of the system $\omega \in \operatorname{St}(A)$.
- Systems can be transformed into one another using transformations $T: A \rightarrow B$.
These transform states: $T(\omega) \in \operatorname{St}(B)$.

GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use the framework of generalized probabilistic theories (GPTs), also called operational probabilistic theories (OPTs).

- We have a collection of types of physical systems A, B, C, \ldots.
- Each system can be prepared in different ways leading to different states of the system $\omega \in \operatorname{St}(A)$.
- Systems can be transformed into one another using transformations $T: A \rightarrow B$.
These transform states: $T(\omega) \in \operatorname{St}(B)$.
- A measurement of a system is represented by a collection of effects $a_{1}, a_{2}, \ldots, a_{k} \in \operatorname{Eff}(A)$.

GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use the framework of generalized probabilistic theories (GPTs), also called operational probabilistic theories (OPTs).

- We have a collection of types of physical systems A, B, C, \ldots.
- Each system can be prepared in different ways leading to different states of the system $\omega \in \operatorname{St}(A)$.
- Systems can be transformed into one another using transformations $T: A \rightarrow B$.
These transform states: $T(\omega) \in \operatorname{St}(B)$.
- A measurement of a system is represented by a collection of effects $a_{1}, a_{2}, \ldots, a_{k} \in \operatorname{Eff}(A)$.
- The probability that the outcome associated to a_{j} is observed when system is in state ω is denoted by $\omega\left(a_{j}\right) \in[0,1]$, and we have $\sum_{j} \omega\left(a_{j}\right)=1$.

GPT as category

This can be made more like a category:

GPT as category

This can be made more like a category:

- We have a special 'empty system' I.

GPT as category

This can be made more like a category:

- We have a special 'empty system' I.
- States can then be seen as transformations $\omega: I \rightarrow A$, i.e. 'create something from nothing'.
- An effect is a transformation $a: A \rightarrow I$, i.e. 'destroy the system'.
- Probabilities are transformations $p: I \rightarrow I$.

Convex structure

- Given states $\omega_{1}, \omega_{2} \in \operatorname{St}(A)$, decide with probability p to prepare ω_{1} and otherwise prepare ω_{2}.

Convex structure

- Given states $\omega_{1}, \omega_{2} \in \operatorname{St}(A)$, decide with probability p to prepare ω_{1} and otherwise prepare ω_{2}.
- Denote this state by $p \omega_{1}+(1-p) \omega_{2}$.
- This makes $\operatorname{St}(A)$ a convex set.

Convex structure

- Given states $\omega_{1}, \omega_{2} \in \operatorname{St}(A)$, decide with probability p to prepare ω_{1} and otherwise prepare ω_{2}.
- Denote this state by $p \omega_{1}+(1-p) \omega_{2}$.
- This makes $\operatorname{St}(A)$ a convex set.
- We have $\left(p \omega_{1}+(1-p) \omega_{2}\right)(a)=p \omega_{1}(a)+(1-p) \omega_{2}(a)$.

Convex structure

- Given states $\omega_{1}, \omega_{2} \in \operatorname{St}(A)$, decide with probability p to prepare ω_{1} and otherwise prepare ω_{2}.
- Denote this state by $p \omega_{1}+(1-p) \omega_{2}$.
- This makes $\operatorname{St}(A)$ a convex set.
- We have $\left(p \omega_{1}+(1-p) \omega_{2}\right)(a)=p \omega_{1}(a)+(1-p) \omega_{2}(a)$.
- Similarly define $p a_{1}+(1-p) a_{2}$ for effects $a_{1}, a_{2} \in \operatorname{Eff}(A)$. This makes $\operatorname{Eff}(A)$ a convex set.
- We have $\omega\left(p a_{1}+(1-p) a_{2}\right)=p \omega\left(a_{1}\right)+(1-p) \omega\left(a_{2}\right)$.

Quantum Theory as GPT

- Each physical system is a complex matrix algebra $M_{n}(\mathbb{C})$.

Quantum Theory as GPT

- Each physical system is a complex matrix algebra $M_{n}(\mathbb{C})$.
- States of the system are the density operators $\rho \in M_{n}(\mathbb{C})$ (which satisfy $\rho \geqslant 0, \operatorname{tr}(\rho)=1$).

Quantum Theory as GPT

- Each physical system is a complex matrix algebra $M_{n}(\mathbb{C})$.
- States of the system are the density operators $\rho \in M_{n}(\mathbb{C})$ (which satisfy $\rho \geqslant 0, \operatorname{tr}(\rho)=1$).
- A measurement is a collection $E_{i} \in M_{n}(\mathbb{C})$ satisfying $\sum_{i} E_{i}=1$ and $E_{i} \geqslant 0$. Such a E_{i} is called an effect.

Quantum Theory as GPT

- Each physical system is a complex matrix algebra $M_{n}(\mathbb{C})$.
- States of the system are the density operators $\rho \in M_{n}(\mathbb{C})$ (which satisfy $\rho \geqslant 0, \operatorname{tr}(\rho)=1$).
- A measurement is a collection $E_{i} \in M_{n}(\mathbb{C})$ satisfying $\sum_{i} E_{i}=1$ and $E_{i} \geqslant 0$. Such a E_{i} is called an effect.
- Probability of outcome i when in state ρ is $\operatorname{tr}\left(\rho E_{i}\right)$.

Quantum Theory as GPT

- Each physical system is a complex matrix algebra $M_{n}(\mathbb{C})$.
- States of the system are the density operators $\rho \in M_{n}(\mathbb{C})$ (which satisfy $\rho \geqslant 0, \operatorname{tr}(\rho)=1$).
- A measurement is a collection $E_{i} \in M_{n}(\mathbb{C})$ satisfying $\sum_{i} E_{i}=1$ and $E_{i} \geqslant 0$. Such a E_{i} is called an effect.
- Probability of outcome i when in state ρ is $\operatorname{tr}\left(\rho E_{i}\right)$.
- Composite systems given by tensor product of matrices.

Quantum Theory as GPT

- Each physical system is a complex matrix algebra $M_{n}(\mathbb{C})$.
- States of the system are the density operators $\rho \in M_{n}(\mathbb{C})$ (which satisfy $\rho \geqslant 0, \operatorname{tr}(\rho)=1$).
- A measurement is a collection $E_{i} \in M_{n}(\mathbb{C})$ satisfying $\sum_{i} E_{i}=1$ and $E_{i} \geqslant 0$. Such a E_{i} is called an effect.
- Probability of outcome i when in state ρ is $\operatorname{tr}\left(\rho E_{i}\right)$.
- Composite systems given by tensor product of matrices.
- Transformations are completely positive trace-non-increasing maps (or equivalently, CP subunital maps in the opposite direction).

Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

- Start with the GPT framework.
- Assume some nice physical principles.

Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

- Start with the GPT framework.
- Assume some nice physical principles.
- Do some math.

Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

- Start with the GPT framework.
- Assume some nice physical principles.
- Do some math.
- Show that quantum theory is (almost) the only possibility left.

Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

- Start with the GPT framework.
- Assume some nice physical principles.
- Do some math.
- Show that quantum theory is (almost) the only possibility left.
- Profit!

Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

- Start with the GPT framework.
- Assume some nice physical principles.
- Do some math.
- Show that quantum theory is (almost) the only possibility left.
- Profit!

Underlying claim: GPTs can represent any physical theory.

GPTs already assume as given the classical probabilistic framework, and that probabilities are given by real numbers.

This is categorically not very natural.

A suitable categorical framework

Effectus theory

- K. Cho, B. Jacobs, B. Westerbaan \& A. Westerbaan (2015): Introduction to effectus theory.
- B. Westerbaan (2018): Dagger and Dilation in the Category of Von Neumann algebras.
- K. Cho (2019): Effectuses in Categorical Quantum Foundations.

A suitable categorical framework

Effectus theory

- K. Cho, B. Jacobs, B. Westerbaan \& A. Westerbaan (2015): Introduction to effectus theory.
- B. Westerbaan (2018): Dagger and Dilation in the Category of Von Neumann algebras.
- K. Cho (2019): Effectuses in Categorical Quantum Foundations.

An effectus \approx 'generalised generalised probabilistic theory' real numbers \Rightarrow effect monoids
convex spaces \Rightarrow effect algebras.

Effectus Definition

An effectus is a category \mathbf{C} with finite coproducts $(+, 0)$ and a final object I, such that both:

Effectus Definition

An effectus is a category \mathbf{C} with finite coproducts $(+, 0)$ and a final object I, such that both:

1. The following are pullbacks $\forall X, Y$:

Effectus Definition

An effectus is a category \mathbf{C} with finite coproducts $(+, 0)$ and a final object I, such that both:

1. The following are pullbacks $\forall X, Y$:

2. The maps $v, w:(I+I)+I \rightarrow I+I$ given by

$$
v=\left[\left[\kappa_{1}, \kappa_{2}\right], \kappa_{2}\right] \text { and } w=\left[\left[\kappa_{2}, \kappa_{1}\right], \kappa_{2}\right] \text { are jointly monic }
$$

(i.e. if $v \circ f=v \circ g$ and $w \circ f=w \circ g$, then $f=g$).

Examples of effectuses

- Sets (or more generally any topos).

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).
- Any category with biproducts and suitable "discard" maps.

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).
- Any category with biproducts and suitable "discard" maps.
- Opposite of category of order unit spaces

In particular any (causal) general probabilistic theory.

Examples of effectuses

- Sets (or more generally any topos).
- Kleisli category of distribution monad (i.e. classical probabilities).
- Any category with biproducts and suitable "discard" maps.
- Opposite of category of order unit spaces In particular any (causal) general probabilistic theory.
- Opposite category of von Neumann algebras

Basic definitions and consequences

- Partial maps: $f: X \rightarrow Y+I$.
- States: $\operatorname{St}(X):=\operatorname{Hom}(I, X)$.
- Effects: $\operatorname{Eff}(X):=\operatorname{Hom}(X, I+I)$.
- Scalars: $\operatorname{Hom}(I, I+I)$.

Basic definitions and consequences

- Partial maps: $f: X \rightarrow Y+I$.
- States: $\operatorname{St}(X):=\operatorname{Hom}(I, X)$.
- Effects: $\operatorname{Eff}(X):=\operatorname{Hom}(X, I+I)$.
- Scalars: $\operatorname{Hom}(I, I+I)$.
- The states form an abstract convex set.
- The effects form an effect algebra.
- The partial maps preserve this structure.

Basic definitions and consequences

- Partial maps: $f: X \rightarrow Y+I$.
- States: $\operatorname{St}(X):=\operatorname{Hom}(I, X)$.
- Effects: $\operatorname{Eff}(X):=\operatorname{Hom}(X, I+I)$.
- Scalars: $\operatorname{Hom}(I, I+I)$.
- The states form an abstract convex set.
- The effects form an effect algebra.
- The partial maps preserve this structure.

Definition of effectus is basically chosen to make these things true

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associative "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associative "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associative "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.
- Any Boolean algebra
- Any interval $[0, u]$ with $u \geqslant 0$ in an ordered vector space
- In particular: set of effects of C*-algebra.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associative "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.
- Any Boolean algebra
- Any interval $[0, u]$ with $u \geqslant 0$ in an ordered vector space
- In particular: set of effects of C^{*}-algebra.

Note1: Effect algebra is partially ordered by $x \leqslant y$ iff $\exists z: x+z=y$.

Effect algebras

Definition

An effect algebra $\left(E, 0,1,+,(\cdot)^{\perp}\right)$ is a set E with partial commutative associative "addition" + and involution $(\cdot)^{\perp}$ such that

- $\left(x^{\perp}\right)^{\perp}=x$,
- $x+x^{\perp}=1$,
- If $x+1$ is defined, then $x=0$.

Examples:

- $[0,1]\left(x+y\right.$ is defined when $\left.x+y \leqslant 1, x^{\perp}:=1-x\right)$.
- Any Boolean algebra
- Any interval $[0, u]$ with $u \geqslant 0$ in an ordered vector space
- In particular: set of effects of C^{*}-algebra.

Note1: Effect algebra is partially ordered by $x \leqslant y$ iff $\exists z: x+z=y$. Note2: Effect algebras are Eilenberg-Moore algebras of free-forgetful adjunction between bounded posets and orthomodular posets.

Baby effectus

Definition
An Effect theory is a category \mathbf{C} with designated object I such that $\operatorname{Hom}(A, I)$ is an effect algebra, and for any $f: B \rightarrow A$:
$0 \circ f=0,(p+q) \circ f=(p \circ f)+(q \circ f)$.

Baby effectus

Definition

An Effect theory is a category \mathbf{C} with designated object I such that $\operatorname{Hom}(A, I)$ is an effect algebra, and for any $f: B \rightarrow A$:
$0 \circ f=0,(p+q) \circ f=(p \circ f)+(q \circ f)$.
This is what we replace GPTs with. Now we introduce the additional assumptions.

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}: A_{q} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$,

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}: A_{q} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$, such that for all $f: B \rightarrow A$ with $1 \circ f=q \circ f:$

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}: A_{q} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$, such that for all $f: B \rightarrow A$ with $1 \circ f=q \circ f:$

A filter for $q: A \rightarrow I$ is a $\operatorname{map} \xi_{q}: A \rightarrow A^{q}$ with $1 \circ \xi \leqslant q$,

Compressions and filters

A compression for $q: A \rightarrow I$ is a map $\pi_{q}: A_{q} \rightarrow A$ with $1 \circ \pi_{q}=q \circ \pi_{q}$, such that for all $f: B \rightarrow A$ with $1 \circ f=q \circ f$:

A filter for $q: A \rightarrow I$ is a map $\xi_{q}: A \rightarrow A^{q}$ with $1 \circ \xi \leqslant q$, such that for all $f: A \rightarrow B$ with $1 \circ f \leqslant q$:

Quotient and Comprehension: All the adjunctions!

$$
\begin{gathered}
\underset{(X, p) \mapsto X / p}{\text { Quotient }} \operatorname{Pred}_{\square}(\mathbf{C}) \\
\operatorname{Pred}_{\curvearrowleft}(\mathbf{C}): \\
\text { Objects are }(X, p: X \rightarrow I) . \\
\text { Morphisms: } f:(X, p) \rightarrow(Y, q) \text { is } \\
f: X \rightarrow Y \text { with } p^{\perp} \geqslant q^{\perp} \circ f .
\end{gathered}
$$

Source: arXiv:1512.05813, p. 97

See also: Cho, Jacobs, Westerbaan ${ }^{2}$ 2015. Quotient-Comprehension Chains

Example

Let $\mathbf{M a t}_{\mathbb{C}}^{\text {op }}$ be the opposite category of positive sub-unital maps $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$. I.e $a \geqslant 0 \Longrightarrow f(a) \geqslant 0$ and $f(1) \leqslant 1$.

Example

Let $\mathrm{Mat}_{\mathbb{C}}^{\mathrm{op}}$ be the opposite category of positive sub-unital maps $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$. I.e $a \geqslant 0 \Longrightarrow f(a) \geqslant 0$ and $f(1) \leqslant 1$.

An effect then corresponds to $q \in M_{n}(\mathbb{C})$ with $0 \leqslant q \leqslant 1$.
Write $q=\sum_{i} \lambda_{i} q_{i}$ with $\lambda_{i}>0, q_{i} q_{j}=\delta_{i j} q_{i}$.
Define $\lceil q\rceil=\sum_{i} q_{i} .\lfloor q\rfloor=\sum_{i ; \lambda_{i}=1} q_{i}$.

Example

Let Mat ${ }_{\mathbb{C}}^{\text {op }}$ be the opposite category of positive sub-unital maps $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$. I.e $a \geqslant 0 \Longrightarrow f(a) \geqslant 0$ and $f(1) \leqslant 1$.

An effect then corresponds to $q \in M_{n}(\mathbb{C})$ with $0 \leqslant q \leqslant 1$.
Write $q=\sum_{i} \lambda_{i} q_{i}$ with $\lambda_{i}>0, q_{i} q_{j}=\delta_{i j} q_{i}$.
Define $\lceil q\rceil=\sum_{i} q_{i} .\lfloor q\rfloor=\sum_{i ; \lambda_{i}=1} q_{i}$.
The projection $\pi_{q}: M_{n}(\mathbb{C}) \rightarrow\lfloor q\rfloor M_{n}(\mathbb{C})\lfloor q\rfloor$ is a compression.
$\xi_{q}:\lceil q\rceil M_{n}(\mathbb{C})\lceil q\rceil \rightarrow M_{n}(\mathbb{C})$ with $\xi_{q}(p)=\sqrt{q} p \sqrt{q}$ is a filter.
NOTE: Being universal objects, compressions and filters are unique up to isomorphism.

Images, kernels and cokernels

Definition
An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.

Images, kernels and cokernels

Definition

An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.
An effect q is sharp if it is an image of some map.

Images, kernels and cokernels

Definition

An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.
An effect q is sharp if it is an image of some map.

Proposition

An effect theory has images, and for all sharp effects compressions and filters if and only if the category has all kernels and cokernels.

Images, kernels and cokernels

Definition

An image of $f: A \rightarrow B$ is the smallest effect $q \in \operatorname{Eff}(B)$ such that $q^{\perp} \circ f=0$.
An effect q is sharp if it is an image of some map.

Proposition

An effect theory has images, and for all sharp effects compressions and filters if and only if the category has all kernels and cokernels.

In fact: compressions are kernels, and filters for sharp effects are cokernels.
\Rightarrow filters are "fuzzy" cokernels.

Pure maps

Definition
We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Motivation: In Mat $\mathbb{C}_{\text {op }}^{\text {op }}$ a map $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is pure iff $\exists V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $f(a)=V a V^{\dagger}$ for all a. These are the Kraus rank-1 operators

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Motivation: In Mat $\mathbb{C}_{\mathbb{C}}^{\text {op }}$ a map $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is pure iff $\exists V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $f(a)=V_{a} V^{\dagger}$ for all a. These are the Kraus rank-1 operators

Remark

From definition it is not clear that pure maps are closed under composition. But: In Mat \mathbb{C}^{op} it is true.

Pure maps

Definition

We call a map f pure when there exists a filter ξ and compression π such that $f=\pi \circ \xi$.

Motivation: In Mat $\mathbb{C}_{\mathbb{C}}^{\text {op }}$ a map $f: M_{n}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$ is pure iff $\exists V: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ such that $f(a)=V a V^{\dagger}$ for all a. These are the Kraus rank-1 operators

Remark

From definition it is not clear that pure maps are closed under composition. But: In Mat ${ }_{\mathbb{C}}^{\mathrm{op}}$ it is true.
Also: there is an obvious dagger on pure maps in Mat \mathbb{C}^{OP}.

Some motivation for compression and filter axioms

- A compression relates the subsystem where an effect is certainly true to the original system.
- Conversely, a filter filters a subsystem to make an effect true.

Some motivation for compression and filter axioms

- A compression relates the subsystem where an effect is certainly true to the original system.
- Conversely, a filter filters a subsystem to make an effect true.
- Hence, 'reversing' a filter we get a compression and vice versa.

Some motivation for compression and filter axioms

- A compression relates the subsystem where an effect is certainly true to the original system.
- Conversely, a filter filters a subsystem to make an effect true.
- Hence, 'reversing' a filter we get a compression and vice versa.
- Note also that if we compose a compression with a filter for the same effect, that we arrive back at the same system.

Pure effect Theories

Definition
A pure effect theory (PET) is an effect theory satisfying the following:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.

Pure effect Theories

Definition

A pure effect theory (PET) is an effect theory satisfying the following:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.
3. All effects have filters and compressions.
4. The pure maps form a dagger-category.

Pure effect Theories

Definition

A pure effect theory (PET) is an effect theory satisfying the following:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.
3. All effects have filters and compressions.
4. The pure maps form a dagger-category.
5. If π_{q} is a compression for sharp q, then π_{q}^{\dagger} is a filter for q.
6. Compressions for sharp q are isometries: $\pi_{q}^{\dagger} \circ \pi_{q}=\mathrm{id}$.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.
- vNA ${ }_{\text {ncpsu }}^{\mathrm{op}}$: von Neumann algebras with normal completely positive sub-unital maps between them.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.
- vNA ${ }_{\text {ncpsu }}^{\mathrm{op}}$: von Neumann algebras with normal completely positive sub-unital maps between them.
- Category of finite-dimensional real C*-algebras.

PET examples

Examples of PETs:

- Kleisli category of distribution monad.
- vNA ${ }_{\text {ncpsu }}^{\circ \mathrm{p}}$: von Neumann algebras with normal completely positive sub-unital maps between them.
- Category of finite-dimensional real C*-algebras.
- EJA psu: positive sub-unital maps between Euclidean Jordan algebras.

Euclidean Jordan algebras

Definition

A Euclidean Jordan algebra (EJA) $(E,\langle\cdot, \cdot\rangle, *, 1)$ is a real Hilbert space with a commutative unital product that satisfies $\forall a, b, c$:

$$
a *\left(b * a^{2}\right)=(a * b) * a^{2} \quad\langle a * b, c\rangle=\langle b, a * c\rangle
$$

Euclidean Jordan algebras

Definition

A Euclidean Jordan algebra (EJA) $(E,\langle\cdot, \cdot\rangle, *, 1)$ is a real Hilbert space with a commutative unital product that satisfies $\forall a, b, c$:

$$
a *\left(b * a^{2}\right)=(a * b) * a^{2} \quad\langle a * b, c\rangle=\langle b, a * c\rangle
$$

Example: $M_{n}(F)^{\text {sa }}$ - self-adjoint matrices over $F=\mathbb{R}, \mathbb{C}, \mathbb{H}$ with $A * B:=\frac{1}{2}(A B+B A)$ and $\langle A, B\rangle:=\operatorname{tr}(A B)$.

Me explaining why Jordan algebras are cool:

Operational effect theory

Definition
We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.

Operational effect theory

Definition

We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.
- The effect spaces are finite-dimensional.
- The sets of states are closed.

Operational effect theory

Definition

We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.
- The effect spaces are finite-dimensional.
- The sets of states are closed.
- If $\operatorname{Eff}(A) \cong[0,1]$ then $A \cong 1$.

Operational effect theory

Definition

We call an effect theory operational when

- Scalars are real: $\operatorname{Eff}(I)=[0,1]$.
- States order-separate the effects.
- The effect spaces are finite-dimensional.
- The sets of states are closed.
- If $\operatorname{Eff}(A) \cong[0,1]$ then $A \cong I$.

Operational effect theory \approx generalized probabilistic theory

Main result 1: Everything is a Jordan algebra

Theorem
Let \mathbf{C} be an operational PET. Then there is a functor $F: \mathbf{C} \rightarrow \mathbf{E J A}_{p s u}^{\circ \mathrm{p}}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$.

Main result 1: Everything is a Jordan algebra

Theorem
Let \mathbf{C} be an operational PET. Then there is a functor $F: \mathbf{C} \rightarrow \mathbf{E J A}_{p s u}^{\circ \text { op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$.
It is faithful iff the effects of \mathbf{C} separate the maps.
(If $\forall p: p \circ f=p \circ g$ then $f=g$)

Main result 1: Everything is a Jordan algebra

Theorem
Let \mathbf{C} be an operational PET. Then there is a functor
$F: \mathbf{C} \rightarrow \operatorname{EJA}_{p s u}^{\circ \mathrm{p}}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$.
It is faithful iff the effects of \mathbf{C} separate the maps.
(If $\forall p: p \circ f=p \circ g$ then $f=g$)
"Operational PETs consist of Euclidean Jordan algebras"

Monoidal effect theories

How to go from Jordan algebras to quantum theory?

Monoidal effect theories

How to go from Jordan algebras to quantum theory?
Answer: Jordan algebras don't have tensor products

Monoidal effect theories

How to go from Jordan algebras to quantum theory?
Answer: Jordan algebras don't have tensor products

Definition

An effect theory is monoidal when it is monoidal, I is the monoidal unit and the tensor preserves addition.

Monoidal effect theories

How to go from Jordan algebras to quantum theory?
Answer: Jordan algebras don't have tensor products

Definition

An effect theory is monoidal when it is monoidal, I is the monoidal unit and the tensor preserves addition. A PET is monoidal if the subcategory of pure maps is in addition also monoidal.

Quantum Theory Reconstructed

Theorem
Let \mathbf{C} be a monoidal operational PET. Then there is a functor $F: \mathbf{C} \rightarrow \mathbf{D}^{\text {op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$ where \mathbf{D} is an appropriate category of real or complex C^{*}-algebras.

Quantum Theory Reconstructed

Theorem
Let \mathbf{C} be a monoidal operational PET. Then there is a functor $F: \mathbf{C} \rightarrow \mathbf{D}^{\text {op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$ where \mathbf{D} is an appropriate category of real or complex C^{*}-algebras.
Furthermore, if effects separate maps, then it is faithful and C*-algebras must be complex.

Quantum Theory Reconstructed

Theorem

Let \mathbf{C} be a monoidal operational PET. Then there is a functor $F: \mathbf{C} \rightarrow \mathbf{D}^{\text {op }}$ with $F(\operatorname{Eff}(A)) \cong \operatorname{Eff}(F(A))$ where \mathbf{D} is an appropriate category of real or complex C^{*}-algebras.
Furthermore, if effects separate maps, then it is faithful and
C*-algebras must be complex.

Recall the assumptions:

1. All maps have images.
2. When q is sharp, q^{\perp} is sharp.
3. All effects have filters and compressions.
4. The pure maps form a monoidal dagger-category.
5. If π_{q} is a compression for sharp q, then π_{q}^{\dagger} is a filter for q.
6. Compressions for sharp q are isometries: $\pi_{q}^{\dagger} \circ \pi_{q}=$ id.

Getting rid of real numbers

While our axioms can be written abstractly, in the end we still need real numbers to prove the result. Can we do better?

Getting rid of real numbers

While our axioms can be written abstractly, in the end we still need real numbers to prove the result. Can we do better?

Yes!
(based on Dichotomy between deterministic and probabilistic models in countably additive effectus theory, by Cho, Westerbaan \& vdW)

σ-effect algebras

- Recall that $[0,1]$ is an effect algebra using its regular addition.

σ-effect algebras

- Recall that $[0,1]$ is an effect algebra using its regular addition.
- However: in $[0,1]$ some countable sums exist too!

σ-effect algebras

- Recall that $[0,1]$ is an effect algebra using its regular addition.
- However: in $[0,1]$ some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.

σ-effect algebras

- Recall that $[0,1]$ is an effect algebra using its regular addition.
- However: in $[0,1]$ some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.

Definition (informal)
A σ-effect algebra is an effect algebra where a sum of a countable set exists when it exists for every finite subset.

σ-effect algebras

- Recall that $[0,1]$ is an effect algebra using its regular addition.
- However: in $[0,1]$ some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.

Definition (informal)

A σ-effect algebra is an effect algebra where a sum of a countable set exists when it exists for every finite subset.

Definition

A σ-effect theory is an effect theory where each set of effects is a σ-effect algebra.

σ-effect algebras

- Recall that $[0,1]$ is an effect algebra using its regular addition.
- However: in $[0,1]$ some countable sums exist too!
- In $[0,1]$ a sum $\sum_{i=0}^{n} x_{i}$ exists when $\sum_{i=0}^{k} x_{i} \leqslant 1$ for all $k \in \mathbb{N}$.

Definition (informal)

A σ-effect algebra is an effect algebra where a sum of a countable set exists when it exists for every finite subset.

Definition

A σ-effect theory is an effect theory where each set of effects is a σ-effect algebra.

Examples
EJA $_{p s u}^{\mathrm{op}}, \mathbf{v N A}_{\mathrm{ncpsu}}^{\mathrm{op}}$.

σ-effect monoids

In a σ-effect theory, the scalars hom (I, I) form a σ-effect monoid.

σ-effect monoids

In a σ-effect theory, the scalars hom (I, I) form a σ-effect monoid.
Theorem (Westerbaan, Westerbaan \& vdW, LICS'20)
A σ-effect monoid M embeds into $M_{1} \oplus M_{2}$ where M_{1} is a ω-complete Boolean algebra and $M_{2}:=\{f: X \rightarrow[0,1]$ continuous $\}$ for a basically disconnected X.

σ-effect monoids

In a σ-effect theory, the scalars hom (I, I) form a σ-effect monoid.
Theorem (Westerbaan, Westerbaan \& vdW, LICS'20)
A σ-effect monoid M embeds into $M_{1} \oplus M_{2}$ where M_{1} is a ω-complete Boolean algebra and $M_{2}:=\{f: X \rightarrow[0,1]$ continuous $\}$ for a basically disconnected X.

Corollary

Scalars in a σ-effect theory are commutative.

Normalisation in σ-effect theories

Theorem
Let \mathbf{C} be a σ-effect theory with $M=\operatorname{hom}(I, I)$.
The following are equivalent.

- States in C can be normalised.
- Non-zero scalars are epi.
- M has a 'division' operation.
- M has no zero divisors $(a \cdot b=0 \Longrightarrow a=0$ or $b=0)$.
- M is irreducible $\left(M_{1} \oplus M_{2}=M \Longrightarrow M_{1}=0\right.$ or $\left.M_{2}=0\right)$.

Normalisation in σ-effect theories

Theorem
Let \mathbf{C} be a σ-effect theory with $M=\operatorname{hom}(I, I)$.
The following are equivalent.

- States in C can be normalised.
- Non-zero scalars are epi.
- M has a 'division' operation.
- M has no zero divisors $(a \cdot b=0 \Longrightarrow a=0$ or $b=0)$.
- M is irreducible ($M_{1} \oplus M_{2}=M \Longrightarrow M_{1}=0$ or $M_{2}=0$).

Furthermore, if any and thus all these conditions hold then $M \cong\{0\}, M \cong\{0,1\}$ or $M \cong[0,1]$.

Dichotomy between deterministic and probabilistic models

Hence: σ-effect theories with normalisation come in three types:

- hom $(I, I) \cong\{0\}$: only holds when \mathbf{C} is equivalent to the trivial single-object category with a single morphism.

Dichotomy between deterministic and probabilistic models

Hence: σ-effect theories with normalisation come in three types:

- hom $(I, I) \cong\{0\}$: only holds when \mathbf{C} is equivalent to the trivial single-object category with a single morphism.
- $\operatorname{hom}(I, I) \cong\{0,1\}$: \mathbf{C} is deterministic, i.e. the probability $p \circ \omega$ that an effect p holds on a state ω is either 0 or 1 .

Dichotomy between deterministic and probabilistic models

Hence: σ-effect theories with normalisation come in three types:

- hom $(I, I) \cong\{0\}$: only holds when \mathbf{C} is equivalent to the trivial single-object category with a single morphism.
- $\operatorname{hom}(I, I) \cong\{0,1\}$: \mathbf{C} is deterministic, i.e. the probability $p \circ \omega$ that an effect p holds on a state ω is either 0 or 1 .
- hom $(I, I) \cong[0,1]$: \mathbf{C} is probabilistic, i.e. the probability $p \circ \omega$ is an actual real probability.

Dichotomy between deterministic and probabilistic models

Hence: σ-effect theories with normalisation come in three types:

- hom $(I, I) \cong\{0\}$: only holds when \mathbf{C} is equivalent to the trivial single-object category with a single morphism.
- $\operatorname{hom}(I, I) \cong\{0,1\}$: \mathbf{C} is deterministic, i.e. the probability $p \circ \omega$ that an effect p holds on a state ω is either 0 or 1 .
- hom $(I, I) \cong[0,1]$: \mathbf{C} is probabilistic, i.e. the probability $p \circ \omega$ is an actual real probability.

So any 'non-boring' σ-effect theory with normalisation is basically a GPT.

Conclusion and Future work

- Definition of purity motivated trough effectus theory

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions $=$ Jordan algebras

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C^{*}-algebras, and thus standard quantum theory

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C*-algebras, and thus standard quantum theory
- Assuming the existence of real numbers can be replaced by requiring countable sums and normalisation to exist.

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C*-algebras, and thus standard quantum theory
- Assuming the existence of real numbers can be replaced by requiring countable sums and normalisation to exist.
Future work:
- Minimality of conditions?

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C^{*}-algebras, and thus standard quantum theory
- Assuming the existence of real numbers can be replaced by requiring countable sums and normalisation to exist.
Future work:
- Minimality of conditions?
- How much can be done without assuming real numbers?

Conclusion and Future work

- Definition of purity motivated trough effectus theory
- Operational PET + purity assumptions = Jordan algebras
- Adding tensor products gives C^{*}-algebras, and thus standard quantum theory
- Assuming the existence of real numbers can be replaced by requiring countable sums and normalisation to exist.
Future work:
- Minimality of conditions?
- How much can be done without assuming real numbers?
- Characterize infinite-dimensional quantum theory?

Advertisements

Slides available at
http://vdwetering.name/pdfs/effectus_mit_meeting.pdf
Paper at https://compositionality-journal.org/papers/ compositionality-1-1/

Lecture series on Reconstructions of quantum theory
https://www. youtube.com/watch?v=-9nGxlLl614

Effectuses in Categorical Quantum Foundations
K. Cho (PhD Thesis) arXiv:1910.12198

A Characterisation of Ordered Abstract Probabilities
A. Westerbaan, B. Westerbaan, vdW
arXiv:1912.10040
Dichotomy between deterministic and probabilistic models in countably additive effectus theory
K. Cho, B. Westerbaan, vdW arXiv:2003.10245

Thank you for your attention

