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In this talk

§ The use of physical principles in physics

§ A brief history of (reconstructing) quantum theory

§ Generalised probabilistic theories

§ Effectus theory and a new reconstruction



Why Quantum Theory?



Why Relativity?



Einstein and relativity

§ Einstein postulated two general physical principles:

§ Constancy of speed of light.

§ Constancy of physical laws in different reference frames.

§ From this he derived Minkowski spacetime / Lorentz
transformations

§ At the time there wasn’t much evidence supporting this.

§ It took him 10 years to formalise his third principle:

§ Gravitational and inertial acceleration are equivalent.

§ Incredibly, his theory still seems correct for large scale
structures.
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Benefits of physical principles

§ It is productive
(Einstein found the correct theory without much evidence)

§ It motivates the mathematical structure of the theory.
E.g. Why is spacetime curved? It is needed for the equivalence
principle.

§ It points to meaningful experiments.
(we can test the constancy of the speed of light)

§ Aesthetically pleasing.
(reduces ‘why relativity?’ to ‘why these principles?’)

§ Helps the search for generalisations
(because you know you need to break one of these principles)
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Back to quantum theory



Very brief history of quantum mechanics

§ 1900–1925: Ad-hoc explanations using the idea of quanta in
various areas of physics.

§ 1925: Heisenberg, Born and Jordan developed matrix
mechanics, Schrödinger developed wave mechanics.

§ 1932: von Neumann, Mathematische Grundlagen der
Quantenmechanik.

Basically, we now still use the mathematical framework specified by
von Neumann.
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Mathematical postulates of quantum mechanics

§ To each physical system we associate a complex Hilbert
space H .

§ The states of a system correspond to unit vectors |ψy PH up
to global phase.

§ Physical observables are self-adjoint operators A on H .

§ The expectation value of A on |ψy is xψ|A |ψy.
§ If the energy of a system is given by the observable H, then the

system evolves as |ψptqy “ e´itH |ψy.
§ The Hilbert space of a composite system is given by the tensor

product of the component Hilbert spaces.
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So many questions...

§ Why Hilbert space?

§ Why a complex one?

§ Why are states unit vectors and why up to global phase?

§ Why are observables linear operators on the Hilbert space?

§ Why self-adjoint?

§ Why are probabilities given by the inner product?

§ Why is time-evolution given by a unitary map of the form e itH?

§ Why is a composite system described by a tensor product?
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Answering these questions

§ The search for answers to these questions has been going on
for almost 100 years.

§ Early work („ 1930-1960) tried to generalise quantum
mechanics.

§ This sort of always failed.

§ Later work tried to show why this always failed, i.e. why
quantum mechanics is ‘inevitable’ (first expressed by Mackey in
1957).

§ First a lot of work was done in quantum logic (1960-1980),
which was capped of by Sòler’s theorem in 1995.

§ Modern work (2000-2020) focuses more on operational
frameworks.
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Operational viewpoint

A quantity or concept is operational when it corresponds to
something measurable or observable (in a lab).

§ In relativity: clocks, rods, events, observers.

§ Entropy is a priori an abstract quantity, but via Shannon
information theory can be given an operational interpretation.

§ Measurement probabilities are operational: ‘prepare this state,
apply this transformation, do this measurement. Repeat many
times and record the probability of observing a certain
outcome’.
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GPTs/OPTs

Most modern (2000-2020) reconstructions of quantum theory use
the framework of generalized probabilistic theories (GPTs), also
called operational probabilistic theories (OPTs).

§ We have a collection of types of physical systems A,B,C , . . ..

§ Each system can be prepared in different ways leading to
different states of the system ω P StpAq.

§ Systems can be transformed into one another using
transformations T : AÑ B.
These transform states: T pωq P StpBq.

§ A measurement of a system is represented by a collection of
effects a1, a2, . . . , ak P EffpAq.

§ The probability that the outcome associated to aj is observed
when system is in state ω is denoted by ωpajq P r0, 1s, and we
have

ř

j ωpajq “ 1.
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GPT as category

This can be made more like a category:

§ We have a special ‘empty system’ I .

§ States can then be seen as transformations ω : I Ñ A,
i.e. ‘create something from nothing’.

§ An effect is a transformation a : AÑ I , i.e. ‘destroy the
system’.

§ Probabilities are transformations p : I Ñ I .
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Convex structure

§ Given states ω1, ω2 P StpAq, decide with probability p to
prepare ω1 and otherwise prepare ω2.

§ Denote this state by pω1 ` p1´ pqω2.

§ This makes StpAq a convex set.

§ We have ppω1 ` p1´ pqω2qpaq “ pω1paq ` p1´ pqω2paq.

§ Similarly define pa1 ` p1´ pqa2 for effects a1, a2 P EffpAq.
This makes EffpAq a convex set.

§ We have ωppa1 ` p1´ pqa2q “ pωpa1q ` p1´ pqωpa2q.
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Quantum Theory as GPT

§ Each physical system is a complex matrix algebra MnpCq.

§ States of the system are the density operators ρ P MnpCq
(which satisfy ρ ě 0, trpρq “ 1).

§ A measurement is a collection Ei P MnpCq satisfying
ř

i Ei “ 1
and Ei ě 0. Such a Ei is called an effect.

§ Probability of outcome i when in state ρ is trpρEi q.

§ Composite systems given by tensor product of matrices.

§ Transformations are completely positive trace-non-increasing
maps (or equivalently, CP subunital maps in the opposite
direction).
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Reconstructions using GPTs

A recipe for reconstructions of quantum theory:

§ Start with the GPT framework.

§ Assume some nice physical principles.

§ Do some math.

§ Show that quantum theory is (almost) the only possibility left.

§ Profit!

Underlying claim: GPTs can represent any physical theory.
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GPTs already assume as given the classical probabilistic framework,
and that probabilities are given by real numbers.

This is categorically not very natural.



A suitable categorical framework

Effectus theory

§ K. Cho, B. Jacobs, B. Westerbaan & A. Westerbaan (2015):
Introduction to effectus theory.

§ B. Westerbaan (2018): Dagger and Dilation in the Category of
Von Neumann algebras.

§ K. Cho (2019): Effectuses in Categorical Quantum
Foundations.

An effectus « ’generalised generalised probabilistic theory’
real numbers ñ effect monoids
convex spaces ñ effect algebras.
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Effectus Definition

An effectus is a category C with finite coproducts p`, 0q and a final
object I , such that both:

1. The following are pullbacks @X ,Y :

X ` Y X ` I

I ` Y I ` I

!`id

id`!

!`id

id`!

X I

X ` Y I ` I

κ1

!

κ1

!`!

2. The maps v ,w : pI ` I q ` I Ñ I ` I given by

v “ rrκ1, κ2s, κ2s and w “ rrκ2, κ1s, κ2s are jointly monic

(i.e. if v ˝ f “ v ˝ g and w ˝ f “ w ˝ g , then f “ g).
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Examples of effectuses

§ Sets (or more generally any topos).

§ Kleisli category of distribution monad (i.e. classical
probabilities).

§ Any category with biproducts and suitable “discard” maps.

§ Opposite of category of order unit spaces
In particular any (causal) general probabilistic theory.

§ Opposite category of von Neumann algebras
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Basic definitions and consequences

§ Partial maps: f : X Ñ Y ` I .

§ States: StpX q :“ HompI ,X q.

§ Effects: EffpX q :“ HompX , I ` I q.

§ Scalars: HompI , I ` I q.

§ The states form an abstract convex set.

§ The effects form an effect algebra.

§ The partial maps preserve this structure.

Definition of effectus is basically chosen to make these things true
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Effect algebras

Definition
An effect algebra pE , 0, 1,`, p¨qKq is a set E with partial
commutative associative “addition” ` and involution p¨qK such that

§ pxKqK “ x ,

§ x ` xK “ 1,

§ If x ` 1 is defined, then x “ 0.

Examples:

§ r0, 1s (x ` y is defined when x ` y ď 1, xK :“ 1´ x).

§ Any Boolean algebra

§ Any interval r0, us with u ě 0 in an ordered vector space

§ In particular: set of effects of C˚-algebra.

Note1: Effect algebra is partially ordered by x ď y iff Dz : x ` z “ y .
Note2: Effect algebras are Eilenberg-Moore algebras of free-forgetful
adjunction between bounded posets and orthomodular posets.
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Baby effectus

Definition
An Effect theory is a category C with designated object I such that
HompA, I q is an effect algebra, and for any f : B Ñ A:
0 ˝ f “ 0, pp ` qq ˝ f “ pp ˝ f q ` pq ˝ f q.

This is what we replace GPTs with. Now we introduce the
additional assumptions.
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Compressions and filters

A compression for q : AÑ I is a map πq : Aq Ñ A with
1 ˝ πq “ q ˝ πq,

such that for all f : B Ñ A with 1 ˝ f “ q ˝ f :

Aq A

B

πq

f f

A filter for q : AÑ I is a map ξq : AÑ Aq with 1 ˝ ξ ď q, such
that for all f : AÑ B with 1 ˝ f ď q:

Aq A

B

f

ξq

f
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Quotient and Comprehension: All the adjunctions!

Pred˝pCq:
Objects are pX , p : X Ñ I q.

Morphisms: f : pX , pq Ñ pY , qq is
f : X Ñ Y with pK ě qK ˝ f .

Source: arXiv:1512.05813, p.97

See also: Cho, Jacobs, Westerbaan2 2015. Quotient–Comprehension Chains



Example

Let MatopC be the opposite category of positive sub-unital maps
f : MnpCq Ñ MmpCq. I.e a ě 0 ùñ f paq ě 0 and f p1q ď 1.

An effect then corresponds to q P MnpCq with 0 ď q ď 1.

Write q “
ř

i λiqi with λi ą 0, qiqj “ δijqi .
Define rqs “

ř

i qi . tqu “
ř

i ;λi“1
qi .

The projection πq : MnpCq Ñ tquMnpCqtqu is a compression.

ξq : rqsMnpCqrqs Ñ MnpCq with ξqppq “
?
qp
?
q is a filter.

NOTE: Being universal objects, compressions and filters are unique
up to isomorphism.
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Images, kernels and cokernels

Definition
An image of f : AÑ B is the smallest effect q P EffpBq such that
qK ˝ f “ 0.

An effect q is sharp if it is an image of some map.

Proposition

An effect theory has images, and for all sharp effects compressions
and filters if and only if the category has all kernels and cokernels.

In fact: compressions are kernels, and filters for sharp effects are
cokernels.
ñ filters are “fuzzy” cokernels.
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Pure maps

Definition
We call a map f pure when there exists a filter ξ and compression π
such that f “ π ˝ ξ.

Motivation: In MatopC a map f : MnpCq Ñ MmpCq is pure iff
DV : Cn Ñ Cm such that f paq “ VaV : for all a. These are the
Kraus rank-1 operators

Remark
From definition it is not clear that pure maps are closed under
composition. But: In MatopC it is true.
Also: there is an obvious dagger on pure maps in MatopC .
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Some motivation for compression and filter axioms

§ A compression relates the subsystem where an effect is
certainly true to the original system.

§ Conversely, a filter filters a subsystem to make an effect true.

§ Hence, ‘reversing’ a filter we get a compression and vice versa.

§ Note also that if we compose a compression with a filter for
the same effect, that we arrive back at the same system.
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Pure effect Theories

Definition
A pure effect theory (PET) is an effect theory satisfying the
following:

1. All maps have images.

2. When q is sharp, qK is sharp.

3. All effects have filters and compressions.

4. The pure maps form a dagger-category.

5. If πq is a compression for sharp q, then π:q is a filter for q.

6. Compressions for sharp q are isometries: π:q ˝ πq “ id.
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PET examples

Examples of PETs:

§ Kleisli category of distribution monad.

§ vNAop
ncpsu: von Neumann algebras with normal completely

positive sub-unital maps between them.

§ Category of finite-dimensional real C˚-algebras.

§ EJAop
psu: positive sub-unital maps between Euclidean Jordan

algebras.
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Euclidean Jordan algebras

Definition
A Euclidean Jordan algebra (EJA) pE , x¨, ¨y, ˚, 1q is a real Hilbert
space with a commutative unital product that satisfies @a, b, c:

a ˚ pb ˚ a2q “ pa ˚ bq ˚ a2 xa ˚ b, cy “ xb, a ˚ cy

Example: MnpF q
sa — self-adjoint matrices over F “ R,C,H with

A ˚ B :“ 1
2pAB ` BAq and xA,By :“ trpABq.
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Me explaining why Jordan algebras are cool:



Operational effect theory

Definition
We call an effect theory operational when

§ Scalars are real: EffpI q “ r0, 1s.

§ States order-separate the effects.

§ The effect spaces are finite-dimensional.

§ The sets of states are closed.

§ If EffpAq – r0, 1s then A – I .

Operational effect theory « generalized probabilistic theory
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Main result 1: Everything is a Jordan algebra

Theorem
Let C be an operational PET. Then there is a functor
F : CÑ EJAop

psu with F pEffpAqq – EffpF pAqq.

It is faithful iff the effects of C separate the maps.
(If @p : p ˝ f “ p ˝ g then f “ g)

“Operational PETs consist of Euclidean Jordan algebras”
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Monoidal effect theories

How to go from Jordan algebras to quantum theory?

Answer: Jordan algebras don’t have tensor products

Definition
An effect theory is monoidal when it is monoidal, I is the monoidal
unit and the tensor preserves addition. A PET is monoidal if the
subcategory of pure maps is in addition also monoidal.
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Quantum Theory Reconstructed

Theorem
Let C be a monoidal operational PET. Then there is a functor
F : CÑ Dop with F pEffpAqq – EffpF pAqq where D is an
appropriate category of real or complex C˚-algebras.

Furthermore, if effects separate maps, then it is faithful and
C˚-algebras must be complex.

Recall the assumptions:

1. All maps have images.

2. When q is sharp, qK is sharp.

3. All effects have filters and compressions.

4. The pure maps form a monoidal dagger-category.

5. If πq is a compression for sharp q, then π:q is a filter for q.

6. Compressions for sharp q are isometries: π:q ˝ πq “ id.
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2. When q is sharp, qK is sharp.

3. All effects have filters and compressions.

4. The pure maps form a monoidal dagger-category.

5. If πq is a compression for sharp q, then π:q is a filter for q.

6. Compressions for sharp q are isometries: π:q ˝ πq “ id.



Getting rid of real numbers

While our axioms can be written abstractly, in the end we still need
real numbers to prove the result. Can we do better?

Yes!
(based on Dichotomy between deterministic and probabilistic models
in countably additive effectus theory, by Cho, Westerbaan & vdW)
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σ-effect algebras

§ Recall that r0, 1s is an effect algebra using its regular addition.

§ However: in r0, 1s some countable sums exist too!

§ In r0, 1s a sum
řn

i“0 xi exists when
řk

i“0 xi ď 1 for all k P N.

Definition (informal)

A σ-effect algebra is an effect algebra where a sum of a countable
set exists when it exists for every finite subset.

Definition
A σ-effect theory is an effect theory where each set of effects is a
σ-effect algebra.

Examples

EJAop
psu, vNAop

ncpsu.
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σ-effect monoids

In a σ-effect theory, the scalars hompI , I q form a σ-effect monoid.

Theorem (Westerbaan, Westerbaan & vdW, LICS’20)

A σ-effect monoid M embeds into M1 ‘M2 where M1 is a
ω-complete Boolean algebra and M2 :“ tf : X Ñ r0, 1s continuousu
for a basically disconnected X .

Corollary

Scalars in a σ-effect theory are commutative.
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Normalisation in σ-effect theories

Theorem
Let C be a σ-effect theory with M “ hompI , I q.
The following are equivalent.

§ States in C can be normalised.

§ Non-zero scalars are epi.

§ M has a ‘division’ operation.

§ M has no zero divisors (a ¨ b “ 0 ùñ a “ 0 or b “ 0).

§ M is irreducible (M1 ‘M2 “ M ùñ M1 “ 0 or M2 “ 0).

Furthermore, if any and thus all these conditions hold then
M – t0u, M – t0, 1u or M – r0, 1s.
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Dichotomy between deterministic and probabilistic models

Hence: σ-effect theories with normalisation come in three types:

§ hompI , I q – t0u: only holds when C is equivalent to the trivial
single-object category with a single morphism.

§ hompI , I q – t0, 1u: C is deterministic, i.e. the probability
p ˝ ω that an effect p holds on a state ω is either 0 or 1.

§ hompI , I q – r0, 1s: C is probabilistic, i.e. the probability p ˝ ω
is an actual real probability.

So any ‘non-boring’ σ-effect theory with normalisation is basically a
GPT.
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Conclusion and Future work

§ Definition of purity motivated trough effectus theory

§ Operational PET + purity assumptions = Jordan algebras

§ Adding tensor products gives C˚-algebras, and thus standard
quantum theory

§ Assuming the existence of real numbers can be replaced by
requiring countable sums and normalisation to exist.

Future work:

§ Minimality of conditions?

§ How much can be done without assuming real numbers?

§ Characterize infinite-dimensional quantum theory?
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Thank you for your attention
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