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Previously

§ Introduced generalised probabilistic theories (GPTs) as a
framework for studying alternative physical theories.

§ They consist essentially of a order unit spaces VA with effects
EffpAq Ď r0, 1sVA

and states StpAq Ď StpVAq.

§ Saw concepts like coarse-graining, finite tomography and local
tomography.



Today

§ Some modern reconstructions using the GPT framework.

§ Reconstructing properties of quantum theory with ‘partial
reconstructions’.

§ Look at a reconstruction of my own based on sequential
measurement.



Some modern reconstructions of quantum theory

Next time...

§ Lucien Hardy, 2001:
Quantum Theory From Five Reasonable Axioms.

§ Chiribella, D’Ariano, Perinotti, 2011:
Informational derivation of quantum theory.

§ Masanes & Müller, 2011:
A derivation of quantum theory from physical requirements.

§ Barnum, Müller, Ududec, 2014: Higher-order interference and
single-system postulates characterizing quantum theory



Hardy’s five axioms

§ Axiom 1: We are using the GPT framework.

§ Axiom 2: The tomographic dimension of a system is a function
of the informational dimension, and takes the ‘minimal value
consistent with the axioms’.

§ Axiom 3: ‘A system whose state is constrained to belong to an
M-dimensional subspace (i.e. have support on only M of a set
of N possible distinguishable states) behaves like a system of
dimension M.’

§ Axiom 4: Theory satisfies local tomography, and informational
dimension ‘multiplies’ over composite systems.

§ Axiom 5: ‘There exists a continuous reversible transformation
on a system between any two pure states of that system.’
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Perfectly distinguishable states

A collection of states ω1, . . . , ωk P StpAq is perfectly distinguishable
if there exists a measurement a1, . . . ak such that ωi pajq “ δij .

The informational dimension IA of A is the maximal size of a set of
perfectly distinguishable states. Tomographic dimension is
TA :“ dimpVAq.

Axiom 2: TA “ f pIAq for some f : NÑ N and if there is
multiple options for f we pick the smallest one.

Examples

For VA “ Rn we have IA “ TA “ n.
For VA “ MnpCqsa we have IA “ n and TA “ n2.
For VA “ MnpRqsa we have IA “ n, TA “ npn ` 1q{2.
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Axiom 3 and 4

Axiom 3: A system whose state is constrained to belong
to an M-dimensional subspace behaves like a system of
dimension M.

This is related to the existence of ‘filters’ for a system. We will get
back to it later.

Axiom 4: For all systems A and B we have
TAbB “ TATB and IAbB “ IAIB .
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Pure states

Definition
Let C be a convex set. An element a P C is extreme when
a “ pb ` p1´ pqc for 0 ă p ă 1 implies b “ c “ a.

We call the extreme points of StpAq pure states.

Definition
A GPT satisfies pure transitivity if for each pair of pure states
ω1, ω2 P StpAq we can find a reversible transformation Φ : AÑ A
such that Φpω1q “ ω2.
It satisfies continuous transitivity if we can find a family of reversible
transformations Φt for t P r0, 1s such that Φ0pω1q “ ω1 and
Φ1pω1q “ ω2.

Axiom 5: the GPT satisfies continuous transitivity.
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Hardy’s reconstruction restated

Theorem
Let E be a GPT where for all systems A and B

§ TA “ f pIAq for some f : NÑ N,

§ TAbB “ TATB and IAbB “ IAIB ,

§ states with limited support act like they are on smaller systems.

If E additionally satisfies pure transitivity, then the GPT where f
takes the smallest possible value is classical theory.
If E instead satisfies continuous transitivity, then the GPT where f
takes the smallest possible value is quantum theory.



Chiribella, D’Ariano, Perinotti

Informational derivation of quantum theory (2011):

§ Axiom 1: causality.

§ Axiom 2: Perfect distinguishability: ‘if a state is not completely
mixed (i.e., if it cannot be obtained as a mixture from any
other state), then there exists at least one state that can be
perfectly distinguished from it.’

§ Axiom 3: Ideal compression: ‘every source of information can
be encoded in a suitable physical system in a lossless and
maximally efficient fashion.’

§ Axiom 4: Local tomography.

§ Axiom 5: Pure conditioning: A local atomic effect applied to a
pure composite state results in a pure state.

§ Axiom 6: Every state has an ‘essentially unique’ purification.
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Refinements and faces

Definition
If ω “

ř

i piωi for states ω, ωi P StpAq and probabilities pi P r0, 1s,
we say each ωi refines ω.

The face identified by ω is the convex subset Fω Ď StpAq consisting
of refinements of ω.
ω is completely mixed when every state ω1 P StpAq refines ω,
i.e. when Fω “ StpAq.

In any GPT it is always the case that a completely mixed state is
not perfectly distinguishable from any other state.

Axiom 2: For ω P StpAq not completely mixed, there
exists σ P StpAq that is perfectly distinguishable from ω.

§ Note 1: Axiom 2 follows from no-restriction hypothesis.

§ Note 2: ω is pure iff Fω “ tωu.
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Ideal compression

§ A lossless compression for a state ω P StpAq consists of an
encoding f : AÑ B and decoding g : B Ñ A such that
gpf pωi qq “ ωi when ω “

ř

i piωi .

§ I.e. g ˝ f is id when restricted to Fω Ď StpAq.

§ A compression for ω is ideal when B is ‘as small as possible’:
when for each σ P StpBq there is ω1 P Fω s.t. f pω1q “ σ.

Axiom 3: For every state there exists an ideal compression.
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Atomic measurements and pure conditioning

For effects a, ai P EffpAq we say each ai refines a if a “
ř

i ai .

The refinement is trivial when ai “ λia for all i .
We call a atomic when it only has trivial refinements.

Axiom 5: Let ω P StpAb Bq be pure and a P EffpAq be
atomic. Then pab idq ˝ ω P StpBq is a pure state.

Stronger version

Axiom 5’: The composition of any two atomic
transformations is again atomic.
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Purifications

Definition
A purification for ω P StpAq is a pure state σ P StpAb Bq such that
ω “ pidb 1q ˝ σ, i.e. ωpaq “ σpab 1q.

Axiom 6: Every state has a purification that is essentially
unique: for two purifications σ, σ1 P StpAb Bq of the
same state there exists a reversible transformation
Φ : B Ñ B such that σ “ pidb Φq ˝ σ1.

Note: there is a trivial system I such that Ab I – A, which has a
unique pure state idI .
For any pure states ω, ω1 P StpAq both idI b ω “ ω and
idI b ω

1 “ ω1 are purifications for idI .
So by essential uniqueness Φpω1q “ ω for some reversible
Φ : AÑ A.
ñ get pure transitivity for free.



Purifications

Definition
A purification for ω P StpAq is a pure state σ P StpAb Bq such that
ω “ pidb 1q ˝ σ, i.e. ωpaq “ σpab 1q.

Axiom 6: Every state has a purification that is essentially
unique: for two purifications σ, σ1 P StpAb Bq of the
same state there exists a reversible transformation
Φ : B Ñ B such that σ “ pidb Φq ˝ σ1.

Note: there is a trivial system I such that Ab I – A, which has a
unique pure state idI .
For any pure states ω, ω1 P StpAq both idI b ω “ ω and
idI b ω

1 “ ω1 are purifications for idI .
So by essential uniqueness Φpω1q “ ω for some reversible
Φ : AÑ A.
ñ get pure transitivity for free.



Purifications

Definition
A purification for ω P StpAq is a pure state σ P StpAb Bq such that
ω “ pidb 1q ˝ σ, i.e. ωpaq “ σpab 1q.

Axiom 6: Every state has a purification that is essentially
unique: for two purifications σ, σ1 P StpAb Bq of the
same state there exists a reversible transformation
Φ : B Ñ B such that σ “ pidb Φq ˝ σ1.

Note: there is a trivial system I such that Ab I – A, which has a
unique pure state idI .

For any pure states ω, ω1 P StpAq both idI b ω “ ω and
idI b ω

1 “ ω1 are purifications for idI .
So by essential uniqueness Φpω1q “ ω for some reversible
Φ : AÑ A.
ñ get pure transitivity for free.



Purifications

Definition
A purification for ω P StpAq is a pure state σ P StpAb Bq such that
ω “ pidb 1q ˝ σ, i.e. ωpaq “ σpab 1q.

Axiom 6: Every state has a purification that is essentially
unique: for two purifications σ, σ1 P StpAb Bq of the
same state there exists a reversible transformation
Φ : B Ñ B such that σ “ pidb Φq ˝ σ1.

Note: there is a trivial system I such that Ab I – A, which has a
unique pure state idI .
For any pure states ω, ω1 P StpAq both idI b ω “ ω and
idI b ω

1 “ ω1 are purifications for idI .
So by essential uniqueness Φpω1q “ ω for some reversible
Φ : AÑ A.

ñ get pure transitivity for free.



Purifications

Definition
A purification for ω P StpAq is a pure state σ P StpAb Bq such that
ω “ pidb 1q ˝ σ, i.e. ωpaq “ σpab 1q.

Axiom 6: Every state has a purification that is essentially
unique: for two purifications σ, σ1 P StpAb Bq of the
same state there exists a reversible transformation
Φ : B Ñ B such that σ “ pidb Φq ˝ σ1.

Note: there is a trivial system I such that Ab I – A, which has a
unique pure state idI .
For any pure states ω, ω1 P StpAq both idI b ω “ ω and
idI b ω

1 “ ω1 are purifications for idI .
So by essential uniqueness Φpω1q “ ω for some reversible
Φ : AÑ A.
ñ get pure transitivity for free.



Informational derivation restated

Theorem
Let E be a GPT satisfying the 6 axioms below.

§ Axiom 1: It is causal.

§ Axiom 2: If a state cannot be perfectly distinguished from any
other state, then it must be completely mixed.

§ Axiom 3: Every state has an ideal compression.

§ Axiom 4: It satisfies local tomography.

§ Axiom 5: A composition of atomic processes is atomic.

§ Axiom 6: Every state has an essentially unique purification.

Then StpAq – DOpCnq for some n for each system A in E.



Masanes & Müller reconstruction

A derivation of quantum theory from physical requirements, 2011:

§ Axiom 1: ‘bitlike’ systems, that have informational dimension 2,
are finite-dimensional.

§ Axiom 2: local tomography.

§ Axiom 3: systems and subspaces of equal informational
dimension are isomorphic.

§ Axiom 4: Pure transitivity.

§ Axiom 5: No-restriction hypothesis for bitlike systems.

These axioms are only satisfied by classical theory, and quantum
theory.
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Commonalities

What do these three reconstructions have in common?

§ They assume local tomography to control composites, and to
remove real quantum theory from the possibilities.

§ They assume pure transitivity so they can define a unique
‘invariant’ state.

§ They have some kind of ‘filter’ axiom that allows them to
reduce the problem to bitlike systems.

Let’s look at a quite different reconstruction.
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Barnum, Müller, Ududec

Higher-order interference and single-system postulates characterizing
quantum theory, 2014:

§ Axiom 1: spectrality: any state can be written as a convex
mixture of perfectly distinguishable pure states.

§ Axiom 2: pure ‘frame’ transitivity.

§ Axiom 3: No higher-order interference: ‘the interference
pattern between mutually exclusive paths in an experiment is
exactly the sum of the patterns which would be observed in all
two-path sub-experiments, corrected for overlaps.’

§ Axiom 4: Observability of energy: ‘there is non-trivial
continuous reversible time evolution, and the generator of every
such evolution can be associated to an observable (’energy’)
which is a conserved quantity.’
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Frame transitivity

Definition
A k-frame is a set of pure states ω1, . . . , ωk P StpAq that are
perfectly distinguishable.

Axiom 2: Given two k-frames ω1, . . . , ωk and σ1, . . . , σk
on A there is a reversible transformation Φ : AÑ A such
that Φpωi q “ σi for all i .

This is basically the strongest possible pure transitivity axiom.



Observability of energy

§ Fix a system A. Denote its group of reversible transformations
by G .

§ Under the assumptions of GPTs G is a compact Lie group.

§ Suppose its Lie algebra g is not empty.

§ Each X P g generates a time evolution etX on StpAq and on
VA.

§ An energy observable assignment is an injective linear map
φ : gÑ VA such that φpX q is conserved under etX , but not
under all time evolutions.

Axiom 4: Every system has an energy observable
assignment.
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Relation to Jordan algebras

§ Axioms 1-3 are satisfied only when each system A has VA

isomorphic to Rn or to a simple Euclidean Jordan algebra.

§ Adding ‘energy observability’ only MnpCqsa remains.

§ Barnum & Hilgert in 2019 showed that Axiom 3 is actually
superfluous: spectrality + frame transitivity = simple EJAs.
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Enough full reconstructions,
now lets do partial ones!



What is special about quantum theory?

§ Superposition of states!

§ Entanglement!

§ Wavefunction ‘collapse’ !

§ Heisenberg uncertainty!

§ You can’t clone quantum states!

§ You can calculate things faster!

§ Bell nonlocality!

...but are these special?

If the universe was governed by some other non-classical
theory, would we not also see these properties?
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Studying what is special

§ Start with GPT framework.

§ Formulate the property in GPT language.

§ Assume some set of principles you like
(But hopefully not enough to only get quantum theory!)

§ If the property holds for all such GPTs then it is not special to
quantum theory.



No-cloning/no-broadcasting

§ A cloning process is some process Φ : AÑ Ab A such that
Φpωq “ ω b ω for all ω P StpAq.

§ Quantum theory famously has no cloning.

§ But: classically, there is also no process that can clone arbitrary
mixed states.

§ A Broadcasting process is Φ : AÑ Ab A satisfying
Φpωqpab 1q “ ωpaq and Φpωqp1b aq “ ωpaq. I.e. the
marginal on each subsystem acts like a copy of ω.

§ Classical theory has a broadcasting process, but quantum
theory does not.

Theorem (Barnum et al., 2007)

A causal GPT with local tomography has a broadcasting process for
a system iff the system is classical.



No-cloning/no-broadcasting

§ A cloning process is some process Φ : AÑ Ab A such that
Φpωq “ ω b ω for all ω P StpAq.

§ Quantum theory famously has no cloning.

§ But: classically, there is also no process that can clone arbitrary
mixed states.

§ A Broadcasting process is Φ : AÑ Ab A satisfying
Φpωqpab 1q “ ωpaq and Φpωqp1b aq “ ωpaq. I.e. the
marginal on each subsystem acts like a copy of ω.

§ Classical theory has a broadcasting process, but quantum
theory does not.

Theorem (Barnum et al., 2007)

A causal GPT with local tomography has a broadcasting process for
a system iff the system is classical.



No-cloning/no-broadcasting

§ A cloning process is some process Φ : AÑ Ab A such that
Φpωq “ ω b ω for all ω P StpAq.

§ Quantum theory famously has no cloning.

§ But: classically, there is also no process that can clone arbitrary
mixed states.

§ A Broadcasting process is Φ : AÑ Ab A satisfying
Φpωqpab 1q “ ωpaq and Φpωqp1b aq “ ωpaq. I.e. the
marginal on each subsystem acts like a copy of ω.

§ Classical theory has a broadcasting process, but quantum
theory does not.

Theorem (Barnum et al., 2007)

A causal GPT with local tomography has a broadcasting process for
a system iff the system is classical.



No-cloning/no-broadcasting

§ A cloning process is some process Φ : AÑ Ab A such that
Φpωq “ ω b ω for all ω P StpAq.

§ Quantum theory famously has no cloning.

§ But: classically, there is also no process that can clone arbitrary
mixed states.

§ A Broadcasting process is Φ : AÑ Ab A satisfying
Φpωqpab 1q “ ωpaq and Φpωqp1b aq “ ωpaq. I.e. the
marginal on each subsystem acts like a copy of ω.

§ Classical theory has a broadcasting process, but quantum
theory does not.

Theorem (Barnum et al., 2007)

A causal GPT with local tomography has a broadcasting process for
a system iff the system is classical.



No-cloning/no-broadcasting

§ A cloning process is some process Φ : AÑ Ab A such that
Φpωq “ ω b ω for all ω P StpAq.

§ Quantum theory famously has no cloning.

§ But: classically, there is also no process that can clone arbitrary
mixed states.

§ A Broadcasting process is Φ : AÑ Ab A satisfying
Φpωqpab 1q “ ωpaq and Φpωqp1b aq “ ωpaq. I.e. the
marginal on each subsystem acts like a copy of ω.

§ Classical theory has a broadcasting process, but quantum
theory does not.

Theorem (Barnum et al., 2007)

A causal GPT with local tomography has a broadcasting process for
a system iff the system is classical.



No-cloning/no-broadcasting

§ A cloning process is some process Φ : AÑ Ab A such that
Φpωq “ ω b ω for all ω P StpAq.

§ Quantum theory famously has no cloning.

§ But: classically, there is also no process that can clone arbitrary
mixed states.

§ A Broadcasting process is Φ : AÑ Ab A satisfying
Φpωqpab 1q “ ωpaq and Φpωqp1b aq “ ωpaq. I.e. the
marginal on each subsystem acts like a copy of ω.

§ Classical theory has a broadcasting process, but quantum
theory does not.

Theorem (Barnum et al., 2007)

A causal GPT with local tomography has a broadcasting process for
a system iff the system is classical.



Other classical properties

Some other properties that only hold if the system is classical, and
not for any other GPTs: (see Barrett, Information processing in
generalized probabilistic theories, 2007)

§ Each state being a unique mixture of pure states.

§ The existence of ‘non-disturbing transformations’.

§ A cloning process that can clone all pure states.

§ The existence of a measurement that can perfectly distinguish
all pure states.
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Theories with purification

Chiribella, D’Ariano, Perinotti, 2010
Any causal GPT with local tomography and essential uniqueness of
purification has the following properties:

§ It is not classical (hence does not have any of the properties of
previous slide)

§ Existence of ‘maximally entangled’ pure states.

§ Possibility of probabilistic state teleportation.

§ Every process can be dilated to reversible transformation.

§ No bit commitment and no programming.



Phase groups

§ Fix a measurement a1, . . . , an P EffpAq that perfectly
distinguishes a maximal set of states.

§ Its phase-group Ppai q consists of the reversible transformations
Φ : AÑ A such that ωpΦpai qq “ ωpai q for all ω P StpAq.

§ In quantum theory, for ai “ |iyxi | we have
Ppai q “ tdiagpe iθ1 , . . . , e iθnq ; θj P r0, 2πsu – Up1qn.

Theorem (Garner et al., 2013)

A GPT has non-trivial phase-groups iff it is non-classical.
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Power of correlations

Imagine the following CHSH game (proposed in 1969):

§ Alice and Bob can communicate arbitrarily before the game
starts, and share some bipartite state.

§ Eve gives both Alice and Bob uniformly random bits s and t.

§ Alice must reply with some bit a and Bob with some bit b.

§ Alice and Bob win if a‘ b “ s ¨ t.

What is the maximal probability that Alice and Bob can win?

§ If they can share a classical state: 3{4 “ 0.75.

§ If they can share an arbitrary non-signalling box: 4{4 “ 1.

§ If they can share a quantum state: p2`
?

2q{4 « 0.85

2`
?

2 is known as the Tsirelson bound.
Why are quantum mechanical correlations strictly weaker than
arbitrary non-signalling boxes?
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Information causality

Principle of information causality (Paw lowski et al. 2009):

‘The information gain that Bob can reach about a
previously unknown to him data set of Alice, by using all
his local resources and m classical bits communicated by
Alice, is at most m bits.”

(actual definition uses concept of mutual information)
Note that for m “ 0 this is just no-signalling.

Theorem
If Alice and Bob can only share states that satisfy information
causality, then they can win CHSH game with maximal probability
p2`

?
2q{4.
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Computational power

It is expected that BQP, the class of problems efficiently solvable
by a quantum computer, is greater than BPP, problems solvable by
a probabilistic classical computer.

The best-known bound for BQP is a class called AWPP (which
contains for instance graph isomorphism).

Theorem (Lee & Barrett, 2015)

The computational power of any GPT satisfying local tomography is
bounded by AWPP.

In 2019 it was showed that there is a GPT that reaches this bound.
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So what is special about quantum theory?

§ Superposition of states (nope, related to phase groups)

§ Entanglement (nope)

§ Heisenberg uncertainty (not really)

§ You can’t clone quantum states (nope)

§ You can calculate things faster (not likely)

§ Bell nonlocality (probably not)



Summary

§ Saw a few different reconstructions using GPT framework.

§ Saw that many qualitative properties of quantum theory are
general properties of any non-classical theory.


